"sgl-kernel/vscode:/vscode.git/clone" did not exist on "3a9afe2a42eb1d5a926a74d35e37f7a583e21b77"
train.py 9.79 KB
Newer Older
1
2
3
4
5
"""
Graph Attention Networks in DGL using SPMV optimization.
Multiple heads are also batched together for faster training.

Compared with the original paper, this code does not implement
6
early stopping.
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

References
----------
Paper: https://arxiv.org/abs/1710.10903
Author's code: https://github.com/PetarV-/GAT
Pytorch implementation: https://github.com/Diego999/pyGAT
"""

import argparse
import numpy as np
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
from dgl import DGLGraph
from dgl.data import register_data_args, load_data
import dgl.function as fn

class GraphAttention(nn.Module):
    def __init__(self,
                 g,
                 in_dim,
                 out_dim,
                 num_heads,
                 feat_drop,
                 attn_drop,
                 alpha,
                 residual=False):
        super(GraphAttention, self).__init__()
        self.g = g
        self.num_heads = num_heads
        self.fc = nn.Linear(in_dim, num_heads * out_dim, bias=False)
        if feat_drop:
            self.feat_drop = nn.Dropout(feat_drop)
        else:
            self.feat_drop = None
        if attn_drop:
            self.attn_drop = nn.Dropout(attn_drop)
        else:
            self.attn_drop = None
        self.attn_l = nn.Parameter(torch.Tensor(size=(num_heads, out_dim, 1)))
        self.attn_r = nn.Parameter(torch.Tensor(size=(num_heads, out_dim, 1)))
        nn.init.xavier_normal_(self.fc.weight.data, gain=1.414)
        nn.init.xavier_normal_(self.attn_l.data, gain=1.414)
        nn.init.xavier_normal_(self.attn_r.data, gain=1.414)
        self.leaky_relu = nn.LeakyReLU(alpha)
        self.residual = residual
        if residual:
            if in_dim != out_dim:
56
57
                self.res_fc = nn.Linear(in_dim, num_heads * out_dim, bias=False)
                nn.init.xavier_normal_(self.res_fc.weight.data, gain=1.414)
58
            else:
59
                self.res_fc = None
60
61
62

    def forward(self, inputs):
        # prepare
63
        h = inputs  # NxD
64
65
        if self.feat_drop:
            h = self.feat_drop(h)
66
67
68
69
        ft = self.fc(h).reshape((h.shape[0], self.num_heads, -1))  # NxHxD'
        head_ft = ft.transpose(0, 1)  # HxNxD'
        a1 = torch.bmm(head_ft, self.attn_l).transpose(0, 1)  # NxHx1
        a2 = torch.bmm(head_ft, self.attn_r).transpose(0, 1)  # NxHx1
70
71
72
73
74
        if self.feat_drop:
            ft = self.feat_drop(ft)
        self.g.ndata.update({'ft' : ft, 'a1' : a1, 'a2' : a2})
        # 1. compute edge attention
        self.g.apply_edges(self.edge_attention)
75
76
        # 2. compute two results: one is the node features scaled by the dropped,
        # unnormalized attention values; another is the normalizer of the attention values.
77
78
79
        self.g.update_all([fn.src_mul_edge('ft', 'a_drop', 'ft'), fn.copy_edge('a', 'a')],
                          [fn.sum('ft', 'ft'), fn.sum('a', 'z')])
        # 3. apply normalizer
80
        ret = self.g.ndata['ft'] / self.g.ndata['z']  # NxHxD'
81
82
        # 4. residual
        if self.residual:
83
84
            if self.res_fc is not None:
                resval = self.res_fc(h).reshape((h.shape[0], self.num_heads, -1))  # NxHxD'
85
            else:
86
87
                resval = torch.unsqueeze(h, 1)  # Nx1xD'
            ret = resval + ret
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
        return ret

    def edge_attention(self, edges):
        # an edge UDF to compute unnormalized attention values from src and dst
        a = self.leaky_relu(edges.src['a1'] + edges.dst['a2'])
        a = torch.exp(a).clamp(-10, 10)  # use clamp to avoid overflow
        if self.attn_drop:
            a_drop = self.attn_drop(a)
        return {'a' : a, 'a_drop' : a_drop}

class GAT(nn.Module):
    def __init__(self,
                 g,
                 num_layers,
                 in_dim,
                 num_hidden,
                 num_classes,
105
                 heads,
106
107
108
109
110
111
112
113
114
115
116
117
                 activation,
                 feat_drop,
                 attn_drop,
                 alpha,
                 residual):
        super(GAT, self).__init__()
        self.g = g
        self.num_layers = num_layers
        self.gat_layers = nn.ModuleList()
        self.activation = activation
        # input projection (no residual)
        self.gat_layers.append(GraphAttention(
118
            g, in_dim, num_hidden, heads[0], feat_drop, attn_drop, alpha, False))
119
        # hidden layers
120
        for l in range(1, num_layers):
121
122
            # due to multi-head, the in_dim = num_hidden * num_heads
            self.gat_layers.append(GraphAttention(
123
                g, num_hidden * heads[l-1], num_hidden, heads[l],
124
125
126
                feat_drop, attn_drop, alpha, residual))
        # output projection
        self.gat_layers.append(GraphAttention(
127
            g, num_hidden * heads[-2], num_classes, heads[-1],
128
129
130
131
132
133
134
135
            feat_drop, attn_drop, alpha, residual))

    def forward(self, inputs):
        h = inputs
        for l in range(self.num_layers):
            h = self.gat_layers[l](h).flatten(1)
            h = self.activation(h)
        # output projection
136
        logits = self.gat_layers[-1](h).mean(1)
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
        return logits

def accuracy(logits, labels):
    _, indices = torch.max(logits, dim=1)
    correct = torch.sum(indices == labels)
    return correct.item() * 1.0 / len(labels)

def evaluate(model, features, labels, mask):
    model.eval()
    with torch.no_grad():
        logits = model(features)
        logits = logits[mask]
        labels = labels[mask]
        return accuracy(logits, labels)

def main(args):
    # load and preprocess dataset
    data = load_data(args)
    features = torch.FloatTensor(data.features)
    labels = torch.LongTensor(data.labels)
    train_mask = torch.ByteTensor(data.train_mask)
    val_mask = torch.ByteTensor(data.val_mask)
    test_mask = torch.ByteTensor(data.test_mask)
    num_feats = features.shape[1]
    n_classes = data.num_labels
    n_edges = data.graph.number_of_edges()
    print("""----Data statistics------'
      #Edges %d
      #Classes %d
      #Train samples %d
      #Val samples %d
      #Test samples %d""" %
          (n_edges, n_classes,
           train_mask.sum().item(),
           val_mask.sum().item(),
           test_mask.sum().item()))

    if args.gpu < 0:
        cuda = False
    else:
        cuda = True
        torch.cuda.set_device(args.gpu)
        features = features.cuda()
        labels = labels.cuda()
        train_mask = train_mask.cuda()
        val_mask = val_mask.cuda()
        test_mask = test_mask.cuda()

    # create DGL graph
    g = DGLGraph(data.graph)
    n_edges = g.number_of_edges()
    # add self loop
    g.add_edges(g.nodes(), g.nodes())
    # create model
191
    heads = ([args.num_heads] * args.num_layers) + [args.num_out_heads]
192
193
194
195
196
    model = GAT(g,
                args.num_layers,
                num_feats,
                args.num_hidden,
                n_classes,
197
                heads,
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
                F.elu,
                args.in_drop,
                args.attn_drop,
                args.alpha,
                args.residual)
    print(model)
    if cuda:
        model.cuda()
    loss_fcn = torch.nn.CrossEntropyLoss()

    # use optimizer
    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)

    # initialize graph
    dur = []
    for epoch in range(args.epochs):
        model.train()
        if epoch >= 3:
            t0 = time.time()
        # forward
        logits = model(features)
        loss = loss_fcn(logits[train_mask], labels[train_mask])

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if epoch >= 3:
            dur.append(time.time() - t0)

        train_acc = accuracy(logits[train_mask], labels[train_mask])

        if args.fastmode:
            val_acc = accuracy(logits[val_mask], labels[val_mask])
        else:
            val_acc = evaluate(model, features, labels, val_mask)

        print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | TrainAcc {:.4f} |"
              " ValAcc {:.4f} | ETputs(KTEPS) {:.2f}".
              format(epoch, np.mean(dur), loss.item(), train_acc,
                     val_acc, n_edges / np.mean(dur) / 1000))

    print()
    acc = evaluate(model, features, labels, test_mask)
    print("Test Accuracy {:.4f}".format(acc))

if __name__ == '__main__':

    parser = argparse.ArgumentParser(description='GAT')
    register_data_args(parser)
    parser.add_argument("--gpu", type=int, default=-1,
                        help="which GPU to use. Set -1 to use CPU.")
    parser.add_argument("--epochs", type=int, default=300,
                        help="number of training epochs")
    parser.add_argument("--num-heads", type=int, default=8,
                        help="number of hidden attention heads")
    parser.add_argument("--num-out-heads", type=int, default=1,
                        help="number of output attention heads")
    parser.add_argument("--num-layers", type=int, default=1,
                        help="number of hidden layers")
    parser.add_argument("--num-hidden", type=int, default=8,
                        help="number of hidden units")
    parser.add_argument("--residual", action="store_true", default=False,
                        help="use residual connection")
    parser.add_argument("--in-drop", type=float, default=.6,
                        help="input feature dropout")
    parser.add_argument("--attn-drop", type=float, default=.6,
                        help="attention dropout")
    parser.add_argument("--lr", type=float, default=0.005,
                        help="learning rate")
    parser.add_argument('--weight-decay', type=float, default=5e-4,
                        help="weight decay")
    parser.add_argument('--alpha', type=float, default=0.2,
                        help="the negative slop of leaky relu")
    parser.add_argument('--fastmode', action="store_true", default=False,
                        help="skip re-evaluate the validation set")
    args = parser.parse_args()
    print(args)

    main(args)