train.py 9.59 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
"""
Graph Attention Networks in DGL using SPMV optimization.
Multiple heads are also batched together for faster training.

Compared with the original paper, this code does not implement
multiple output attention heads.

References
----------
Paper: https://arxiv.org/abs/1710.10903
Author's code: https://github.com/PetarV-/GAT
Pytorch implementation: https://github.com/Diego999/pyGAT
"""

import argparse
import numpy as np
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
from dgl import DGLGraph
from dgl.data import register_data_args, load_data
import dgl.function as fn

class GraphAttention(nn.Module):
    def __init__(self,
                 g,
                 in_dim,
                 out_dim,
                 num_heads,
                 feat_drop,
                 attn_drop,
                 alpha,
                 residual=False):
        super(GraphAttention, self).__init__()
        self.g = g
        self.num_heads = num_heads
        self.fc = nn.Linear(in_dim, num_heads * out_dim, bias=False)
        if feat_drop:
            self.feat_drop = nn.Dropout(feat_drop)
        else:
            self.feat_drop = None
        if attn_drop:
            self.attn_drop = nn.Dropout(attn_drop)
        else:
            self.attn_drop = None
        self.attn_l = nn.Parameter(torch.Tensor(size=(num_heads, out_dim, 1)))
        self.attn_r = nn.Parameter(torch.Tensor(size=(num_heads, out_dim, 1)))
        nn.init.xavier_normal_(self.fc.weight.data, gain=1.414)
        nn.init.xavier_normal_(self.attn_l.data, gain=1.414)
        nn.init.xavier_normal_(self.attn_r.data, gain=1.414)
        self.leaky_relu = nn.LeakyReLU(alpha)
        self.residual = residual
        if residual:
            if in_dim != out_dim:
                self.residual_fc = nn.Linear(in_dim, num_heads * out_dim, bias=False)
                nn.init.xavier_normal_(self.fc.weight.data, gain=1.414)
            else:
                self.residual_fc = None

    def forward(self, inputs):
        # prepare
        h = inputs
        if self.feat_drop:
            h = self.feat_drop(h)
        ft = self.fc(h).reshape((h.shape[0], self.num_heads, -1))
        head_ft = ft.transpose(0, 1)
        a1 = torch.bmm(head_ft, self.attn_l).transpose(0, 1)
        a2 = torch.bmm(head_ft, self.attn_r).transpose(0, 1)
        if self.feat_drop:
            ft = self.feat_drop(ft)
        self.g.ndata.update({'ft' : ft, 'a1' : a1, 'a2' : a2})
        # 1. compute edge attention
        self.g.apply_edges(self.edge_attention)
        # 2. compute two results, one is the node features scaled by the dropped,
        # unnormalized attention values. Another is the normalizer of the attention values.
        self.g.update_all([fn.src_mul_edge('ft', 'a_drop', 'ft'), fn.copy_edge('a', 'a')],
                          [fn.sum('ft', 'ft'), fn.sum('a', 'z')])
        # 3. apply normalizer
        ret = self.g.ndata['ft'] / self.g.ndata['z']
        # 4. residual
        if self.residual:
            if self.residual_fc:
                ret = self.residual_fc(h) + ret
            else:
                ret = h + ret
        return ret

    def edge_attention(self, edges):
        # an edge UDF to compute unnormalized attention values from src and dst
        a = self.leaky_relu(edges.src['a1'] + edges.dst['a2'])
        a = torch.exp(a).clamp(-10, 10)  # use clamp to avoid overflow
        if self.attn_drop:
            a_drop = self.attn_drop(a)
        return {'a' : a, 'a_drop' : a_drop}

class GAT(nn.Module):
    def __init__(self,
                 g,
                 num_layers,
                 in_dim,
                 num_hidden,
                 num_classes,
                 num_heads,
                 activation,
                 feat_drop,
                 attn_drop,
                 alpha,
                 residual):
        super(GAT, self).__init__()
        self.g = g
        self.num_layers = num_layers
        self.gat_layers = nn.ModuleList()
        self.activation = activation
        # input projection (no residual)
        self.gat_layers.append(GraphAttention(
            g, in_dim, num_hidden, num_heads, feat_drop, attn_drop, alpha, False))
        # hidden layers
        for l in range(num_layers - 1):
            # due to multi-head, the in_dim = num_hidden * num_heads
            self.gat_layers.append(GraphAttention(
                g, num_hidden * num_heads, num_hidden, num_heads,
                feat_drop, attn_drop, alpha, residual))
        # output projection
        self.gat_layers.append(GraphAttention(
            g, num_hidden * num_heads, num_classes, 8,
            feat_drop, attn_drop, alpha, residual))

    def forward(self, inputs):
        h = inputs
        for l in range(self.num_layers):
            h = self.gat_layers[l](h).flatten(1)
            h = self.activation(h)
        # output projection
        logits = self.gat_layers[-1](h).sum(1)
        return logits

def accuracy(logits, labels):
    _, indices = torch.max(logits, dim=1)
    correct = torch.sum(indices == labels)
    return correct.item() * 1.0 / len(labels)

def evaluate(model, features, labels, mask):
    model.eval()
    with torch.no_grad():
        logits = model(features)
        logits = logits[mask]
        labels = labels[mask]
        return accuracy(logits, labels)

def main(args):
    # load and preprocess dataset
    data = load_data(args)
    features = torch.FloatTensor(data.features)
    labels = torch.LongTensor(data.labels)
    train_mask = torch.ByteTensor(data.train_mask)
    val_mask = torch.ByteTensor(data.val_mask)
    test_mask = torch.ByteTensor(data.test_mask)
    num_feats = features.shape[1]
    n_classes = data.num_labels
    n_edges = data.graph.number_of_edges()
    print("""----Data statistics------'
      #Edges %d
      #Classes %d
      #Train samples %d
      #Val samples %d
      #Test samples %d""" %
          (n_edges, n_classes,
           train_mask.sum().item(),
           val_mask.sum().item(),
           test_mask.sum().item()))

    if args.gpu < 0:
        cuda = False
    else:
        cuda = True
        torch.cuda.set_device(args.gpu)
        features = features.cuda()
        labels = labels.cuda()
        train_mask = train_mask.cuda()
        val_mask = val_mask.cuda()
        test_mask = test_mask.cuda()

    # create DGL graph
    g = DGLGraph(data.graph)
    n_edges = g.number_of_edges()
    # add self loop
    g.add_edges(g.nodes(), g.nodes())
    # create model
    model = GAT(g,
                args.num_layers,
                num_feats,
                args.num_hidden,
                n_classes,
                args.num_heads,
                F.elu,
                args.in_drop,
                args.attn_drop,
                args.alpha,
                args.residual)
    print(model)
    if cuda:
        model.cuda()
    loss_fcn = torch.nn.CrossEntropyLoss()

    # use optimizer
    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)

    # initialize graph
    dur = []
    for epoch in range(args.epochs):
        model.train()
        if epoch >= 3:
            t0 = time.time()
        # forward
        logits = model(features)
        loss = loss_fcn(logits[train_mask], labels[train_mask])

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if epoch >= 3:
            dur.append(time.time() - t0)

        train_acc = accuracy(logits[train_mask], labels[train_mask])

        if args.fastmode:
            val_acc = accuracy(logits[val_mask], labels[val_mask])
        else:
            val_acc = evaluate(model, features, labels, val_mask)

        print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | TrainAcc {:.4f} |"
              " ValAcc {:.4f} | ETputs(KTEPS) {:.2f}".
              format(epoch, np.mean(dur), loss.item(), train_acc,
                     val_acc, n_edges / np.mean(dur) / 1000))

    print()
    acc = evaluate(model, features, labels, test_mask)
    print("Test Accuracy {:.4f}".format(acc))

if __name__ == '__main__':

    parser = argparse.ArgumentParser(description='GAT')
    register_data_args(parser)
    parser.add_argument("--gpu", type=int, default=-1,
                        help="which GPU to use. Set -1 to use CPU.")
    parser.add_argument("--epochs", type=int, default=300,
                        help="number of training epochs")
    parser.add_argument("--num-heads", type=int, default=8,
                        help="number of hidden attention heads")
    parser.add_argument("--num-out-heads", type=int, default=1,
                        help="number of output attention heads")
    parser.add_argument("--num-layers", type=int, default=1,
                        help="number of hidden layers")
    parser.add_argument("--num-hidden", type=int, default=8,
                        help="number of hidden units")
    parser.add_argument("--residual", action="store_true", default=False,
                        help="use residual connection")
    parser.add_argument("--in-drop", type=float, default=.6,
                        help="input feature dropout")
    parser.add_argument("--attn-drop", type=float, default=.6,
                        help="attention dropout")
    parser.add_argument("--lr", type=float, default=0.005,
                        help="learning rate")
    parser.add_argument('--weight-decay', type=float, default=5e-4,
                        help="weight decay")
    parser.add_argument('--alpha', type=float, default=0.2,
                        help="the negative slop of leaky relu")
    parser.add_argument('--fastmode', action="store_true", default=False,
                        help="skip re-evaluate the validation set")
    args = parser.parse_args()
    print(args)

    main(args)