README.md 1.44 KB
Newer Older
Linfang He's avatar
Linfang He committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
Representation Learning for Attributed Multiplex Heterogeneous Network (GANTE)
============

- Paper link: [https://arxiv.org/abs/1905.01669](https://arxiv.org/abs/1905.01669)
- Author's code repo: [https://github.com/THUDM/GATNE](https://github.com/THUDM/GATNE). Note that only GATNE-T is implemented here.

Requirements
------------
- requirements

``bash
pip install requirements
``

Datasets
--------
* [example](https://s3.us-west-2.amazonaws.com/dgl-data/dataset/recsys/GATNE/example.zip)
* [amazon](https://s3.us-west-2.amazonaws.com/dgl-data/dataset/recsys/GATNE/amazon.zip)
* [youtube](https://s3.us-west-2.amazonaws.com/dgl-data/dataset/recsys/GATNE/youtube.zip)
* [twitter](https://s3.us-west-2.amazonaws.com/dgl-data/dataset/recsys/GATNE/twitter.zip)


Training
--------

Run with following (available dataset: "example", "youtube", "amazon")
```bash
python src/main.py --input data/example
```

To run on "twitter" dataset, use
```bash
python src/main.py --input data/twitter --eval-type 1
```

Results
-------
All the results match the [official code](https://github.com/THUDM/GATNE/blob/master/src/main_pytorch.py) with the same hyper parameter values, including twiiter dataset (auc, pr, f1 is 76.29, 76.17, 69.34, respectively).

|          |  auc   |   pr  |  f1   |
|  ------  |  ----  |  ---  | ----- |
|  amazon  |  96.88 | 96.31 | 92.12 |
|  youtube |  82.29 | 80.35 | 74.63 |
|  twitter |  72.40 | 74.40 | 65.89 |
|  example |  94.65 | 94.57 | 89.99 |