Representation Learning for Attributed Multiplex Heterogeneous Network (GANTE) ============ - Paper link: [https://arxiv.org/abs/1905.01669](https://arxiv.org/abs/1905.01669) - Author's code repo: [https://github.com/THUDM/GATNE](https://github.com/THUDM/GATNE). Note that only GATNE-T is implemented here. Requirements ------------ - requirements ``bash pip install requirements `` Datasets -------- * [example](https://s3.us-west-2.amazonaws.com/dgl-data/dataset/recsys/GATNE/example.zip) * [amazon](https://s3.us-west-2.amazonaws.com/dgl-data/dataset/recsys/GATNE/amazon.zip) * [youtube](https://s3.us-west-2.amazonaws.com/dgl-data/dataset/recsys/GATNE/youtube.zip) * [twitter](https://s3.us-west-2.amazonaws.com/dgl-data/dataset/recsys/GATNE/twitter.zip) Training -------- Run with following (available dataset: "example", "youtube", "amazon") ```bash python src/main.py --input data/example ``` To run on "twitter" dataset, use ```bash python src/main.py --input data/twitter --eval-type 1 ``` Results ------- All the results match the [official code](https://github.com/THUDM/GATNE/blob/master/src/main_pytorch.py) with the same hyper parameter values, including twiiter dataset (auc, pr, f1 is 76.29, 76.17, 69.34, respectively). | | auc | pr | f1 | | ------ | ---- | --- | ----- | | amazon | 96.88 | 96.31 | 92.12 | | youtube | 82.29 | 80.35 | 74.63 | | twitter | 72.40 | 74.40 | 65.89 | | example | 94.65 | 94.57 | 89.99 |