ondisk_dataset_heterograph.ipynb 32.9 KB
Newer Older
1
2
3
4
5
6
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "private_outputs": true,
7
      "provenance": []
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "cells": [
    {
      "cell_type": "markdown",
      "source": [
        "# OnDiskDataset for Heterogeneous Graph\n",
        "\n",
        "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/dmlc/dgl/blob/master/notebooks/stochastic_training/ondisk_dataset_heterograph.ipynb) [![GitHub](https://img.shields.io/badge/-View%20on%20GitHub-181717?logo=github&logoColor=ffffff)](https://github.com/dmlc/dgl/blob/master/notebooks/stochastic_training/ondisk_dataset_heterograph.ipynb)\n",
        "\n",
25
        "This tutorial shows how to create `OnDiskDataset` for heterogeneous graph that could be used in **GraphBolt** framework. The major difference from creating dataset for homogeneous graph is that we need to specify node/edge types for edges, feature data, training/validation/test sets.\n",
26
27
28
29
        "\n",
        "By the end of this tutorial, you will be able to\n",
        "- organize graph structure data.\n",
        "- organize feature data.\n",
30
31
32
33
34
        "- organize training/validation/test set for specific tasks.\n",
        "\n",
        "To create an ``OnDiskDataset`` object, you need to organize all the data including graph structure, feature data and tasks into a directory. The directory should contain a ``metadata.yaml`` file that describes the metadata of the dataset.\n",
        "\n",
        "Now let's generate various data step by step and organize them together to instantiate `OnDiskDataset` finally."
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
      ],
      "metadata": {
        "id": "FnFhPMaAfLtJ"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Install DGL package"
      ],
      "metadata": {
        "id": "Wlb19DtWgtzq"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "# Install required packages.\n",
        "import os\n",
        "import torch\n",
        "import numpy as np\n",
        "os.environ['TORCH'] = torch.__version__\n",
        "os.environ['DGLBACKEND'] = \"pytorch\"\n",
        "\n",
        "# Install the CPU version.\n",
        "device = torch.device(\"cpu\")\n",
        "!pip install --pre dgl -f https://data.dgl.ai/wheels-test/repo.html\n",
        "\n",
        "try:\n",
        "    import dgl\n",
        "    import dgl.graphbolt as gb\n",
        "    installed = True\n",
        "except ImportError as error:\n",
        "    installed = False\n",
        "    print(error)\n",
        "print(\"DGL installed!\" if installed else \"DGL not found!\")"
      ],
      "metadata": {
        "id": "UojlT9ZGgyr9"
      },
      "execution_count": null,
      "outputs": []
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Data preparation\n",
        "In order to demonstrate how to organize various data, let's create a base directory first."
      ],
      "metadata": {
        "id": "2R7WnSbjsfbr"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "base_dir = './ondisk_dataset_heterograph'\n",
        "os.makedirs(base_dir, exist_ok=True)\n",
        "print(f\"Created base directory: {base_dir}\")"
      ],
      "metadata": {
        "id": "SZipbzyltLfO"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "### Generate graph structure data\n",
105
        "For heterogeneous graph, we need to save different edge edges(namely node pairs) into separate **CSV** files.\n",
106
107
        "\n",
        "Note:\n",
108
        "when saving to file, do not save index and header.\n"
109
110
111
112
113
114
115
116
117
118
      ],
      "metadata": {
        "id": "qhNtIn_xhlnl"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "import numpy as np\n",
        "import pandas as pd\n",
119
120
121
122
123
        "\n",
        "# For simplicity, we create a heterogeneous graph with\n",
        "# 2 node types: `user`, `item`\n",
        "# 2 edge types: `user:like:item`, `user:follow:user`\n",
        "# And each node/edge type has the same number of nodes/edges.\n",
124
125
126
        "num_nodes = 1000\n",
        "num_edges = 10 * num_nodes\n",
        "\n",
127
128
129
        "# Edge type: \"user:like:item\"\n",
        "like_edges_path = os.path.join(base_dir, \"like-edges.csv\")\n",
        "like_edges = np.random.randint(0, num_nodes, size=(num_edges, 2))\n",
130
        "print(f\"Part of [user:like:item] edges: {like_edges[:10, :]}\\n\")\n",
131
132
133
        "\n",
        "df = pd.DataFrame(like_edges)\n",
        "df.to_csv(like_edges_path, index=False, header=False)\n",
134
        "print(f\"[user:like:item] edges are saved into {like_edges_path}\\n\")\n",
135
        "\n",
136
137
138
        "# Edge type: \"user:follow:user\"\n",
        "follow_edges_path = os.path.join(base_dir, \"follow-edges.csv\")\n",
        "follow_edges = np.random.randint(0, num_nodes, size=(num_edges, 2))\n",
139
        "print(f\"Part of [user:follow:user] edges: {follow_edges[:10, :]}\\n\")\n",
140
        "\n",
141
142
        "df = pd.DataFrame(follow_edges)\n",
        "df.to_csv(follow_edges_path, index=False, header=False)\n",
143
        "print(f\"[user:follow:user] edges are saved into {follow_edges_path}\\n\")"
144
145
146
147
148
149
150
151
152
153
154
      ],
      "metadata": {
        "id": "HcBt4G5BmSjr"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "### Generate feature data for graph\n",
155
        "For feature data, numpy arrays and torch tensors are supported for now. Let's generate feature data for each node/edge type."
156
157
158
159
160
161
162
163
      ],
      "metadata": {
        "id": "kh-4cPtzpcaH"
      }
    },
    {
      "cell_type": "code",
      "source": [
164
165
166
167
168
        "# Generate node[user] feature in numpy array.\n",
        "node_user_feat_0_path = os.path.join(base_dir, \"node-user-feat-0.npy\")\n",
        "node_user_feat_0 = np.random.rand(num_nodes, 5)\n",
        "print(f\"Part of node[user] feature [feat_0]: {node_user_feat_0[:10, :]}\")\n",
        "np.save(node_user_feat_0_path, node_user_feat_0)\n",
169
        "print(f\"Node[user] feature [feat_0] is saved to {node_user_feat_0_path}\\n\")\n",
170
171
172
173
174
175
        "\n",
        "# Generate another node[user] feature in torch tensor\n",
        "node_user_feat_1_path = os.path.join(base_dir, \"node-user-feat-1.pt\")\n",
        "node_user_feat_1 = torch.rand(num_nodes, 5)\n",
        "print(f\"Part of node[user] feature [feat_1]: {node_user_feat_1[:10, :]}\")\n",
        "torch.save(node_user_feat_1, node_user_feat_1_path)\n",
176
        "print(f\"Node[user] feature [feat_1] is saved to {node_user_feat_1_path}\\n\")\n",
177
178
179
180
181
182
        "\n",
        "# Generate node[item] feature in numpy array.\n",
        "node_item_feat_0_path = os.path.join(base_dir, \"node-item-feat-0.npy\")\n",
        "node_item_feat_0 = np.random.rand(num_nodes, 5)\n",
        "print(f\"Part of node[item] feature [feat_0]: {node_item_feat_0[:10, :]}\")\n",
        "np.save(node_item_feat_0_path, node_item_feat_0)\n",
183
        "print(f\"Node[item] feature [feat_0] is saved to {node_item_feat_0_path}\\n\")\n",
184
185
186
187
188
189
        "\n",
        "# Generate another node[item] feature in torch tensor\n",
        "node_item_feat_1_path = os.path.join(base_dir, \"node-item-feat-1.pt\")\n",
        "node_item_feat_1 = torch.rand(num_nodes, 5)\n",
        "print(f\"Part of node[item] feature [feat_1]: {node_item_feat_1[:10, :]}\")\n",
        "torch.save(node_item_feat_1, node_item_feat_1_path)\n",
190
        "print(f\"Node[item] feature [feat_1] is saved to {node_item_feat_1_path}\\n\")\n",
191
192
193
194
195
196
        "\n",
        "# Generate edge[user:like:item] feature in numpy array.\n",
        "edge_like_feat_0_path = os.path.join(base_dir, \"edge-like-feat-0.npy\")\n",
        "edge_like_feat_0 = np.random.rand(num_edges, 5)\n",
        "print(f\"Part of edge[user:like:item] feature [feat_0]: {edge_like_feat_0[:10, :]}\")\n",
        "np.save(edge_like_feat_0_path, edge_like_feat_0)\n",
197
        "print(f\"Edge[user:like:item] feature [feat_0] is saved to {edge_like_feat_0_path}\\n\")\n",
198
199
200
201
202
203
        "\n",
        "# Generate another edge[user:like:item] feature in torch tensor\n",
        "edge_like_feat_1_path = os.path.join(base_dir, \"edge-like-feat-1.pt\")\n",
        "edge_like_feat_1 = torch.rand(num_edges, 5)\n",
        "print(f\"Part of edge[user:like:item] feature [feat_1]: {edge_like_feat_1[:10, :]}\")\n",
        "torch.save(edge_like_feat_1, edge_like_feat_1_path)\n",
204
        "print(f\"Edge[user:like:item] feature [feat_1] is saved to {edge_like_feat_1_path}\\n\")\n",
205
206
207
208
209
210
        "\n",
        "# Generate edge[user:follow:user] feature in numpy array.\n",
        "edge_follow_feat_0_path = os.path.join(base_dir, \"edge-follow-feat-0.npy\")\n",
        "edge_follow_feat_0 = np.random.rand(num_edges, 5)\n",
        "print(f\"Part of edge[user:follow:user] feature [feat_0]: {edge_follow_feat_0[:10, :]}\")\n",
        "np.save(edge_follow_feat_0_path, edge_follow_feat_0)\n",
211
        "print(f\"Edge[user:follow:user] feature [feat_0] is saved to {edge_follow_feat_0_path}\\n\")\n",
212
213
214
215
216
217
        "\n",
        "# Generate another edge[user:follow:user] feature in torch tensor\n",
        "edge_follow_feat_1_path = os.path.join(base_dir, \"edge-follow-feat-1.pt\")\n",
        "edge_follow_feat_1 = torch.rand(num_edges, 5)\n",
        "print(f\"Part of edge[user:follow:user] feature [feat_1]: {edge_follow_feat_1[:10, :]}\")\n",
        "torch.save(edge_follow_feat_1, edge_follow_feat_1_path)\n",
218
        "print(f\"Edge[user:follow:user] feature [feat_1] is saved to {edge_follow_feat_1_path}\\n\")"
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
      ],
      "metadata": {
        "id": "_PVu1u5brBhF"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "### Generate tasks\n",
        "`OnDiskDataset` supports multiple tasks. For each task, we need to prepare training/validation/test sets respectively. Such sets usually vary among different tasks. In this tutorial, let's create a **Node Classification** task and **Link Prediction** task."
      ],
      "metadata": {
        "id": "ZyqgOtsIwzh_"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "#### Node Classification Task\n",
        "For node classification task, we need **node IDs** and corresponding **labels** for each training/validation/test set. Like feature data, numpy arrays and torch tensors are supported for these sets."
      ],
      "metadata": {
        "id": "hVxHaDIfzCkr"
      }
    },
    {
      "cell_type": "code",
      "source": [
249
        "# For illustration, let's generate item sets for each node type.\n",
250
251
252
253
        "num_trains = int(num_nodes * 0.6)\n",
        "num_vals = int(num_nodes * 0.2)\n",
        "num_tests = num_nodes - num_trains - num_vals\n",
        "\n",
254
255
256
257
258
259
260
261
262
263
264
        "user_ids = np.arange(num_nodes)\n",
        "np.random.shuffle(user_ids)\n",
        "\n",
        "item_ids = np.arange(num_nodes)\n",
        "np.random.shuffle(item_ids)\n",
        "\n",
        "# Train IDs for user.\n",
        "nc_train_user_ids_path = os.path.join(base_dir, \"nc-train-user-ids.npy\")\n",
        "nc_train_user_ids = user_ids[:num_trains]\n",
        "print(f\"Part of train ids[user] for node classification: {nc_train_user_ids[:10]}\")\n",
        "np.save(nc_train_user_ids_path, nc_train_user_ids)\n",
265
        "print(f\"NC train ids[user] are saved to {nc_train_user_ids_path}\\n\")\n",
266
267
268
269
270
271
        "\n",
        "# Train labels for user.\n",
        "nc_train_user_labels_path = os.path.join(base_dir, \"nc-train-user-labels.pt\")\n",
        "nc_train_user_labels = torch.randint(0, 10, (num_trains,))\n",
        "print(f\"Part of train labels[user] for node classification: {nc_train_user_labels[:10]}\")\n",
        "torch.save(nc_train_user_labels, nc_train_user_labels_path)\n",
272
        "print(f\"NC train labels[user] are saved to {nc_train_user_labels_path}\\n\")\n",
273
274
275
276
277
278
        "\n",
        "# Train IDs for item.\n",
        "nc_train_item_ids_path = os.path.join(base_dir, \"nc-train-item-ids.npy\")\n",
        "nc_train_item_ids = item_ids[:num_trains]\n",
        "print(f\"Part of train ids[item] for node classification: {nc_train_item_ids[:10]}\")\n",
        "np.save(nc_train_item_ids_path, nc_train_item_ids)\n",
279
        "print(f\"NC train ids[item] are saved to {nc_train_item_ids_path}\\n\")\n",
280
281
282
283
284
285
        "\n",
        "# Train labels for item.\n",
        "nc_train_item_labels_path = os.path.join(base_dir, \"nc-train-item-labels.pt\")\n",
        "nc_train_item_labels = torch.randint(0, 10, (num_trains,))\n",
        "print(f\"Part of train labels[item] for node classification: {nc_train_item_labels[:10]}\")\n",
        "torch.save(nc_train_item_labels, nc_train_item_labels_path)\n",
286
        "print(f\"NC train labels[item] are saved to {nc_train_item_labels_path}\\n\")\n",
287
288
289
290
291
292
        "\n",
        "# Val IDs for user.\n",
        "nc_val_user_ids_path = os.path.join(base_dir, \"nc-val-user-ids.npy\")\n",
        "nc_val_user_ids = user_ids[num_trains:num_trains+num_vals]\n",
        "print(f\"Part of val ids[user] for node classification: {nc_val_user_ids[:10]}\")\n",
        "np.save(nc_val_user_ids_path, nc_val_user_ids)\n",
293
        "print(f\"NC val ids[user] are saved to {nc_val_user_ids_path}\\n\")\n",
294
295
296
297
298
299
        "\n",
        "# Val labels for user.\n",
        "nc_val_user_labels_path = os.path.join(base_dir, \"nc-val-user-labels.pt\")\n",
        "nc_val_user_labels = torch.randint(0, 10, (num_vals,))\n",
        "print(f\"Part of val labels[user] for node classification: {nc_val_user_labels[:10]}\")\n",
        "torch.save(nc_val_user_labels, nc_val_user_labels_path)\n",
300
        "print(f\"NC val labels[user] are saved to {nc_val_user_labels_path}\\n\")\n",
301
302
303
304
305
306
        "\n",
        "# Val IDs for item.\n",
        "nc_val_item_ids_path = os.path.join(base_dir, \"nc-val-item-ids.npy\")\n",
        "nc_val_item_ids = item_ids[num_trains:num_trains+num_vals]\n",
        "print(f\"Part of val ids[item] for node classification: {nc_val_item_ids[:10]}\")\n",
        "np.save(nc_val_item_ids_path, nc_val_item_ids)\n",
307
        "print(f\"NC val ids[item] are saved to {nc_val_item_ids_path}\\n\")\n",
308
309
310
311
312
313
        "\n",
        "# Val labels for item.\n",
        "nc_val_item_labels_path = os.path.join(base_dir, \"nc-val-item-labels.pt\")\n",
        "nc_val_item_labels = torch.randint(0, 10, (num_vals,))\n",
        "print(f\"Part of val labels[item] for node classification: {nc_val_item_labels[:10]}\")\n",
        "torch.save(nc_val_item_labels, nc_val_item_labels_path)\n",
314
        "print(f\"NC val labels[item] are saved to {nc_val_item_labels_path}\\n\")\n",
315
316
317
318
319
320
        "\n",
        "# Test IDs for user.\n",
        "nc_test_user_ids_path = os.path.join(base_dir, \"nc-test-user-ids.npy\")\n",
        "nc_test_user_ids = user_ids[-num_tests:]\n",
        "print(f\"Part of test ids[user] for node classification: {nc_test_user_ids[:10]}\")\n",
        "np.save(nc_test_user_ids_path, nc_test_user_ids)\n",
321
        "print(f\"NC test ids[user] are saved to {nc_test_user_ids_path}\\n\")\n",
322
323
324
325
326
327
        "\n",
        "# Test labels for user.\n",
        "nc_test_user_labels_path = os.path.join(base_dir, \"nc-test-user-labels.pt\")\n",
        "nc_test_user_labels = torch.randint(0, 10, (num_tests,))\n",
        "print(f\"Part of test labels[user] for node classification: {nc_test_user_labels[:10]}\")\n",
        "torch.save(nc_test_user_labels, nc_test_user_labels_path)\n",
328
        "print(f\"NC test labels[user] are saved to {nc_test_user_labels_path}\\n\")\n",
329
330
331
332
333
334
        "\n",
        "# Test IDs for item.\n",
        "nc_test_item_ids_path = os.path.join(base_dir, \"nc-test-item-ids.npy\")\n",
        "nc_test_item_ids = item_ids[-num_tests:]\n",
        "print(f\"Part of test ids[item] for node classification: {nc_test_item_ids[:10]}\")\n",
        "np.save(nc_test_item_ids_path, nc_test_item_ids)\n",
335
        "print(f\"NC test ids[item] are saved to {nc_test_item_ids_path}\\n\")\n",
336
337
338
339
340
341
        "\n",
        "# Test labels for item.\n",
        "nc_test_item_labels_path = os.path.join(base_dir, \"nc-test-item-labels.pt\")\n",
        "nc_test_item_labels = torch.randint(0, 10, (num_tests,))\n",
        "print(f\"Part of test labels[item] for node classification: {nc_test_item_labels[:10]}\")\n",
        "torch.save(nc_test_item_labels, nc_test_item_labels_path)\n",
342
        "print(f\"NC test labels[item] are saved to {nc_test_item_labels_path}\\n\")"
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
      ],
      "metadata": {
        "id": "S5-fyBbHzTCO"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "#### Link Prediction Task\n",
        "For link prediction task, we need **node pairs** or **negative src/dsts** for each training/validation/test set. Like feature data, numpy arrays and torch tensors are supported for these sets."
      ],
      "metadata": {
        "id": "LhAcDCHQ_KJ0"
      }
    },
    {
      "cell_type": "code",
      "source": [
363
        "# For illustration, let's generate item sets for each edge type.\n",
364
365
366
367
        "num_trains = int(num_edges * 0.6)\n",
        "num_vals = int(num_edges * 0.2)\n",
        "num_tests = num_edges - num_trains - num_vals\n",
        "\n",
368
369
370
371
372
        "# Train node pairs for user:like:item.\n",
        "lp_train_like_node_pairs_path = os.path.join(base_dir, \"lp-train-like-node-pairs.npy\")\n",
        "lp_train_like_node_pairs = like_edges[:num_trains, :]\n",
        "print(f\"Part of train node pairs[user:like:item] for link prediction: {lp_train_like_node_pairs[:10]}\")\n",
        "np.save(lp_train_like_node_pairs_path, lp_train_like_node_pairs)\n",
373
        "print(f\"LP train node pairs[user:like:item] are saved to {lp_train_like_node_pairs_path}\\n\")\n",
374
375
376
377
378
379
        "\n",
        "# Train node pairs for user:follow:user.\n",
        "lp_train_follow_node_pairs_path = os.path.join(base_dir, \"lp-train-follow-node-pairs.npy\")\n",
        "lp_train_follow_node_pairs = follow_edges[:num_trains, :]\n",
        "print(f\"Part of train node pairs[user:follow:user] for link prediction: {lp_train_follow_node_pairs[:10]}\")\n",
        "np.save(lp_train_follow_node_pairs_path, lp_train_follow_node_pairs)\n",
380
        "print(f\"LP train node pairs[user:follow:user] are saved to {lp_train_follow_node_pairs_path}\\n\")\n",
381
382
383
384
385
386
        "\n",
        "# Val node pairs for user:like:item.\n",
        "lp_val_like_node_pairs_path = os.path.join(base_dir, \"lp-val-like-node-pairs.npy\")\n",
        "lp_val_like_node_pairs = like_edges[num_trains:num_trains+num_vals, :]\n",
        "print(f\"Part of val node pairs[user:like:item] for link prediction: {lp_val_like_node_pairs[:10]}\")\n",
        "np.save(lp_val_like_node_pairs_path, lp_val_like_node_pairs)\n",
387
        "print(f\"LP val node pairs[user:like:item] are saved to {lp_val_like_node_pairs_path}\\n\")\n",
388
389
390
391
392
393
        "\n",
        "# Val negative dsts for user:like:item.\n",
        "lp_val_like_neg_dsts_path = os.path.join(base_dir, \"lp-val-like-neg-dsts.pt\")\n",
        "lp_val_like_neg_dsts = torch.randint(0, num_nodes, (num_vals, 10))\n",
        "print(f\"Part of val negative dsts[user:like:item] for link prediction: {lp_val_like_neg_dsts[:10]}\")\n",
        "torch.save(lp_val_like_neg_dsts, lp_val_like_neg_dsts_path)\n",
394
        "print(f\"LP val negative dsts[user:like:item] are saved to {lp_val_like_neg_dsts_path}\\n\")\n",
395
396
397
398
399
400
        "\n",
        "# Val node pairs for user:follow:user.\n",
        "lp_val_follow_node_pairs_path = os.path.join(base_dir, \"lp-val-follow-node-pairs.npy\")\n",
        "lp_val_follow_node_pairs = follow_edges[num_trains:num_trains+num_vals, :]\n",
        "print(f\"Part of val node pairs[user:follow:user] for link prediction: {lp_val_follow_node_pairs[:10]}\")\n",
        "np.save(lp_val_follow_node_pairs_path, lp_val_follow_node_pairs)\n",
401
        "print(f\"LP val node pairs[user:follow:user] are saved to {lp_val_follow_node_pairs_path}\\n\")\n",
402
403
404
405
406
407
        "\n",
        "# Val negative dsts for user:follow:user.\n",
        "lp_val_follow_neg_dsts_path = os.path.join(base_dir, \"lp-val-follow-neg-dsts.pt\")\n",
        "lp_val_follow_neg_dsts = torch.randint(0, num_nodes, (num_vals, 10))\n",
        "print(f\"Part of val negative dsts[user:follow:user] for link prediction: {lp_val_follow_neg_dsts[:10]}\")\n",
        "torch.save(lp_val_follow_neg_dsts, lp_val_follow_neg_dsts_path)\n",
408
        "print(f\"LP val negative dsts[user:follow:user] are saved to {lp_val_follow_neg_dsts_path}\\n\")\n",
409
410
411
412
413
414
        "\n",
        "# Test node paris for user:like:item.\n",
        "lp_test_like_node_pairs_path = os.path.join(base_dir, \"lp-test-like-node-pairs.npy\")\n",
        "lp_test_like_node_pairs = like_edges[-num_tests, :]\n",
        "print(f\"Part of test node pairs[user:like:item] for link prediction: {lp_test_like_node_pairs[:10]}\")\n",
        "np.save(lp_test_like_node_pairs_path, lp_test_like_node_pairs)\n",
415
        "print(f\"LP test node pairs[user:like:item] are saved to {lp_test_like_node_pairs_path}\\n\")\n",
416
417
418
419
420
421
        "\n",
        "# Test negative dsts for user:like:item.\n",
        "lp_test_like_neg_dsts_path = os.path.join(base_dir, \"lp-test-like-neg-dsts.pt\")\n",
        "lp_test_like_neg_dsts = torch.randint(0, num_nodes, (num_tests, 10))\n",
        "print(f\"Part of test negative dsts[user:like:item] for link prediction: {lp_test_like_neg_dsts[:10]}\")\n",
        "torch.save(lp_test_like_neg_dsts, lp_test_like_neg_dsts_path)\n",
422
        "print(f\"LP test negative dsts[user:like:item] are saved to {lp_test_like_neg_dsts_path}\\n\")\n",
423
424
425
426
427
428
        "\n",
        "# Test node paris for user:follow:user.\n",
        "lp_test_follow_node_pairs_path = os.path.join(base_dir, \"lp-test-follow-node-pairs.npy\")\n",
        "lp_test_follow_node_pairs = follow_edges[-num_tests, :]\n",
        "print(f\"Part of test node pairs[user:follow:user] for link prediction: {lp_test_follow_node_pairs[:10]}\")\n",
        "np.save(lp_test_follow_node_pairs_path, lp_test_follow_node_pairs)\n",
429
        "print(f\"LP test node pairs[user:follow:user] are saved to {lp_test_follow_node_pairs_path}\\n\")\n",
430
431
432
433
434
435
        "\n",
        "# Test negative dsts for user:follow:user.\n",
        "lp_test_follow_neg_dsts_path = os.path.join(base_dir, \"lp-test-follow-neg-dsts.pt\")\n",
        "lp_test_follow_neg_dsts = torch.randint(0, num_nodes, (num_tests, 10))\n",
        "print(f\"Part of test negative dsts[user:follow:user] for link prediction: {lp_test_follow_neg_dsts[:10]}\")\n",
        "torch.save(lp_test_follow_neg_dsts, lp_test_follow_neg_dsts_path)\n",
436
        "print(f\"LP test negative dsts[user:follow:user] are saved to {lp_test_follow_neg_dsts_path}\\n\")"
437
438
439
440
441
442
443
444
445
446
447
      ],
      "metadata": {
        "id": "u0jCnXIcAQy4"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Organize Data into YAML File\n",
448
449
        "Now we need to create a `metadata.yaml` file which contains the paths, dadta types of graph structure, feature data, training/validation/test sets. Please note that all path should be relative to `metadata.yaml`.\n",
        "\n",
450
451
452
453
454
455
456
457
        "For heterogeneous graph, we need to specify the node/edge type in **type** fields. For edge type, canonical etype is required which is a string that's concatenated by source node type, etype, and destination node type together with `:`.\n",
        "\n",
        "Notes:\n",
        "- all path should be relative to `metadata.yaml`.\n",
        "- Below fields are optional and not specified in below example.\n",
        "  - `in_memory`: indicates whether to load dada into memory or `mmap`. Default is `True`.\n",
        "\n",
        "Please refer to [YAML specification](https://github.com/dmlc/dgl/blob/master/docs/source/stochastic_training/ondisk-dataset-specification.rst) for more details."
458
459
460
461
462
463
464
465
466
467
468
469
      ],
      "metadata": {
        "id": "wbk6-wxRK-6S"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "yaml_content = f\"\"\"\n",
        "    dataset_name: heterogeneous_graph_nc_lp\n",
        "    graph:\n",
        "      nodes:\n",
470
471
472
473
        "        - type: user\n",
        "          num: {num_nodes}\n",
        "        - type: item\n",
        "          num: {num_nodes}\n",
474
        "      edges:\n",
475
476
477
478
479
480
        "        - type: \"user:like:item\"\n",
        "          format: csv\n",
        "          path: {os.path.basename(like_edges_path)}\n",
        "        - type: \"user:follow:user\"\n",
        "          format: csv\n",
        "          path: {os.path.basename(follow_edges_path)}\n",
481
482
        "    feature_data:\n",
        "      - domain: node\n",
483
484
485
486
487
488
489
490
491
492
493
        "        type: user\n",
        "        name: feat_0\n",
        "        format: numpy\n",
        "        path: {os.path.basename(node_user_feat_0_path)}\n",
        "      - domain: node\n",
        "        type: user\n",
        "        name: feat_1\n",
        "        format: torch\n",
        "        path: {os.path.basename(node_user_feat_1_path)}\n",
        "      - domain: node\n",
        "        type: item\n",
494
495
        "        name: feat_0\n",
        "        format: numpy\n",
496
        "        path: {os.path.basename(node_item_feat_0_path)}\n",
497
        "      - domain: node\n",
498
499
500
501
502
503
504
505
506
507
508
        "        type: item\n",
        "        name: feat_1\n",
        "        format: torch\n",
        "        path: {os.path.basename(node_item_feat_1_path)}\n",
        "      - domain: edge\n",
        "        type: \"user:like:item\"\n",
        "        name: feat_0\n",
        "        format: numpy\n",
        "        path: {os.path.basename(edge_like_feat_0_path)}\n",
        "      - domain: edge\n",
        "        type: \"user:like:item\"\n",
509
510
        "        name: feat_1\n",
        "        format: torch\n",
511
        "        path: {os.path.basename(edge_like_feat_1_path)}\n",
512
        "      - domain: edge\n",
513
        "        type: \"user:follow:user\"\n",
514
515
        "        name: feat_0\n",
        "        format: numpy\n",
516
        "        path: {os.path.basename(edge_follow_feat_0_path)}\n",
517
        "      - domain: edge\n",
518
        "        type: \"user:follow:user\"\n",
519
520
        "        name: feat_1\n",
        "        format: torch\n",
521
        "        path: {os.path.basename(edge_follow_feat_1_path)}\n",
522
523
524
525
526
        "    tasks:\n",
        "      - name: node_classification\n",
        "        num_classes: 10\n",
        "        train_set:\n",
        "          - data:\n",
527
528
        "              - type: user\n",
        "                name: seed_nodes\n",
529
        "                format: numpy\n",
530
531
532
        "                path: {os.path.basename(nc_train_user_ids_path)}\n",
        "              - type: user\n",
        "                name: labels\n",
533
        "                format: torch\n",
534
535
536
537
538
539
540
541
542
        "                path: {os.path.basename(nc_train_user_labels_path)}\n",
        "              - type: item\n",
        "                name: seed_nodes\n",
        "                format: numpy\n",
        "                path: {os.path.basename(nc_train_item_ids_path)}\n",
        "              - type: item\n",
        "                name: labels\n",
        "                format: torch\n",
        "                path: {os.path.basename(nc_train_item_labels_path)}\n",
543
544
        "        validation_set:\n",
        "          - data:\n",
545
546
        "              - type: user\n",
        "                name: seed_nodes\n",
547
        "                format: numpy\n",
548
549
550
        "                path: {os.path.basename(nc_val_user_ids_path)}\n",
        "              - type: user\n",
        "                name: labels\n",
551
        "                format: torch\n",
552
553
554
555
556
557
558
559
560
        "                path: {os.path.basename(nc_val_user_labels_path)}\n",
        "              - type: item\n",
        "                name: seed_nodes\n",
        "                format: numpy\n",
        "                path: {os.path.basename(nc_val_item_ids_path)}\n",
        "              - type: item\n",
        "                name: labels\n",
        "                format: torch\n",
        "                path: {os.path.basename(nc_val_item_labels_path)}\n",
561
562
        "        test_set:\n",
        "          - data:\n",
563
564
        "              - type: user\n",
        "                name: seed_nodes\n",
565
        "                format: numpy\n",
566
567
568
        "                path: {os.path.basename(nc_test_user_ids_path)}\n",
        "              - type: user\n",
        "                name: labels\n",
569
        "                format: torch\n",
570
571
572
573
574
575
576
577
578
        "                path: {os.path.basename(nc_test_user_labels_path)}\n",
        "              - type: item\n",
        "                name: seed_nodes\n",
        "                format: numpy\n",
        "                path: {os.path.basename(nc_test_item_ids_path)}\n",
        "              - type: item\n",
        "                name: labels\n",
        "                format: torch\n",
        "                path: {os.path.basename(nc_test_item_labels_path)}\n",
579
580
581
582
        "      - name: link_prediction\n",
        "        num_classes: 10\n",
        "        train_set:\n",
        "          - data:\n",
583
584
585
586
587
588
        "              - type: \"user:like:item\"\n",
        "                name: node_pairs\n",
        "                format: numpy\n",
        "                path: {os.path.basename(lp_train_like_node_pairs_path)}\n",
        "              - type: \"user:follow:user\"\n",
        "                name: node_pairs\n",
589
        "                format: numpy\n",
590
        "                path: {os.path.basename(lp_train_follow_node_pairs_path)}\n",
591
592
        "        validation_set:\n",
        "          - data:\n",
593
594
        "              - type: \"user:like:item\"\n",
        "                name: node_pairs\n",
595
        "                format: numpy\n",
596
597
598
        "                path: {os.path.basename(lp_val_like_node_pairs_path)}\n",
        "              - type: \"user:like:item\"\n",
        "                name: negative_dsts\n",
599
        "                format: torch\n",
600
601
602
603
604
605
606
607
608
        "                path: {os.path.basename(lp_val_like_neg_dsts_path)}\n",
        "              - type: \"user:follow:user\"\n",
        "                name: node_pairs\n",
        "                format: numpy\n",
        "                path: {os.path.basename(lp_val_follow_node_pairs_path)}\n",
        "              - type: \"user:follow:user\"\n",
        "                name: negative_dsts\n",
        "                format: torch\n",
        "                path: {os.path.basename(lp_val_follow_neg_dsts_path)}\n",
609
610
        "        test_set:\n",
        "          - data:\n",
611
612
613
614
615
616
617
618
619
620
        "              - type: \"user:like:item\"\n",
        "                name: node_pairs\n",
        "                format: numpy\n",
        "                path: {os.path.basename(lp_test_like_node_pairs_path)}\n",
        "              - type: \"user:like:item\"\n",
        "                name: negative_dsts\n",
        "                format: torch\n",
        "                path: {os.path.basename(lp_test_like_neg_dsts_path)}\n",
        "              - type: \"user:follow:user\"\n",
        "                name: node_pairs\n",
621
        "                format: numpy\n",
622
623
624
        "                path: {os.path.basename(lp_test_follow_node_pairs_path)}\n",
        "              - type: \"user:follow:user\"\n",
        "                name: negative_dsts\n",
625
        "                format: torch\n",
626
        "                path: {os.path.basename(lp_test_follow_neg_dsts_path)}\n",
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
        "\"\"\"\n",
        "metadata_path = os.path.join(base_dir, \"metadata.yaml\")\n",
        "with open(metadata_path, \"w\") as f:\n",
        "  f.write(yaml_content)"
      ],
      "metadata": {
        "id": "ddGTWW61Lpwp"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Instantiate `OnDiskDataset`\n",
        "Now we're ready to load dataset via `dgl.graphbolt.OnDiskDataset`. When instantiating, we just pass in the base directory where `metadata.yaml` file lies.\n",
        "\n",
        "During first instantiation, GraphBolt preprocesses the raw data such as constructing `FusedCSCSamplingGraph` from edges. All data including graph, feature data, training/validation/test sets are put into `preprocessed` directory after preprocessing. Any following dataset loading will skip the preprocess stage.\n",
        "\n",
        "After preprocessing, `load()` is required to be called explicitly in order to load graph, feature data and tasks."
      ],
      "metadata": {
        "id": "kEfybHGhOW7O"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "dataset = gb.OnDiskDataset(base_dir).load()\n",
        "graph = dataset.graph\n",
657
        "print(f\"Loaded graph: {graph}\\n\")\n",
658
659
        "\n",
        "feature = dataset.feature\n",
660
        "print(f\"Loaded feature store: {feature}\\n\")\n",
661
662
663
        "\n",
        "tasks = dataset.tasks\n",
        "nc_task = tasks[0]\n",
664
        "print(f\"Loaded node classification task: {nc_task}\\n\")\n",
665
        "lp_task = tasks[1]\n",
666
        "print(f\"Loaded link prediction task: {lp_task}\\n\")"
667
668
669
670
671
672
      ],
      "metadata": {
        "id": "W58CZoSzOiyo"
      },
      "execution_count": null,
      "outputs": []
673
674
    }
  ]
675
}