ondisk_dataset_heterograph.ipynb 33.6 KB
Newer Older
1
2
3
4
5
6
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "private_outputs": true,
7
      "provenance": []
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "cells": [
    {
      "cell_type": "markdown",
      "source": [
        "# OnDiskDataset for Heterogeneous Graph\n",
        "\n",
        "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/dmlc/dgl/blob/master/notebooks/stochastic_training/ondisk_dataset_heterograph.ipynb) [![GitHub](https://img.shields.io/badge/-View%20on%20GitHub-181717?logo=github&logoColor=ffffff)](https://github.com/dmlc/dgl/blob/master/notebooks/stochastic_training/ondisk_dataset_heterograph.ipynb)\n",
        "\n",
25
        "This tutorial shows how to create `OnDiskDataset` for heterogeneous graph that could be used in **GraphBolt** framework. The major difference from creating dataset for homogeneous graph is that we need to specify node/edge types for edges, feature data, training/validation/test sets.\n",
26
27
28
29
        "\n",
        "By the end of this tutorial, you will be able to\n",
        "- organize graph structure data.\n",
        "- organize feature data.\n",
30
31
32
33
34
        "- organize training/validation/test set for specific tasks.\n",
        "\n",
        "To create an ``OnDiskDataset`` object, you need to organize all the data including graph structure, feature data and tasks into a directory. The directory should contain a ``metadata.yaml`` file that describes the metadata of the dataset.\n",
        "\n",
        "Now let's generate various data step by step and organize them together to instantiate `OnDiskDataset` finally."
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
      ],
      "metadata": {
        "id": "FnFhPMaAfLtJ"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Install DGL package"
      ],
      "metadata": {
        "id": "Wlb19DtWgtzq"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "# Install required packages.\n",
        "import os\n",
        "import torch\n",
        "import numpy as np\n",
        "os.environ['TORCH'] = torch.__version__\n",
        "os.environ['DGLBACKEND'] = \"pytorch\"\n",
        "\n",
        "# Install the CPU version.\n",
        "device = torch.device(\"cpu\")\n",
        "!pip install --pre dgl -f https://data.dgl.ai/wheels-test/repo.html\n",
        "\n",
        "try:\n",
        "    import dgl\n",
        "    import dgl.graphbolt as gb\n",
        "    installed = True\n",
        "except ImportError as error:\n",
        "    installed = False\n",
        "    print(error)\n",
        "print(\"DGL installed!\" if installed else \"DGL not found!\")"
      ],
      "metadata": {
        "id": "UojlT9ZGgyr9"
      },
      "execution_count": null,
      "outputs": []
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Data preparation\n",
        "In order to demonstrate how to organize various data, let's create a base directory first."
      ],
      "metadata": {
        "id": "2R7WnSbjsfbr"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "base_dir = './ondisk_dataset_heterograph'\n",
        "os.makedirs(base_dir, exist_ok=True)\n",
        "print(f\"Created base directory: {base_dir}\")"
      ],
      "metadata": {
        "id": "SZipbzyltLfO"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "### Generate graph structure data\n",
105
        "For heterogeneous graph, we need to save different edge edges(namely node pairs) into separate **CSV** files.\n",
106
107
        "\n",
        "Note:\n",
108
        "when saving to file, do not save index and header.\n"
109
110
111
112
113
114
115
116
117
118
      ],
      "metadata": {
        "id": "qhNtIn_xhlnl"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "import numpy as np\n",
        "import pandas as pd\n",
119
120
121
122
123
        "\n",
        "# For simplicity, we create a heterogeneous graph with\n",
        "# 2 node types: `user`, `item`\n",
        "# 2 edge types: `user:like:item`, `user:follow:user`\n",
        "# And each node/edge type has the same number of nodes/edges.\n",
124
125
126
        "num_nodes = 1000\n",
        "num_edges = 10 * num_nodes\n",
        "\n",
127
128
129
130
131
132
133
134
        "# Edge type: \"user:like:item\"\n",
        "like_edges_path = os.path.join(base_dir, \"like-edges.csv\")\n",
        "like_edges = np.random.randint(0, num_nodes, size=(num_edges, 2))\n",
        "print(f\"Part of [user:like:item] edges: {like_edges[:10, :]}\")\n",
        "\n",
        "df = pd.DataFrame(like_edges)\n",
        "df.to_csv(like_edges_path, index=False, header=False)\n",
        "print(f\"[user:like:item] edges are saved into {like_edges_path}\")\n",
135
        "\n",
136
137
138
139
        "# Edge type: \"user:follow:user\"\n",
        "follow_edges_path = os.path.join(base_dir, \"follow-edges.csv\")\n",
        "follow_edges = np.random.randint(0, num_nodes, size=(num_edges, 2))\n",
        "print(f\"Part of [user:follow:user] edges: {follow_edges[:10, :]}\")\n",
140
        "\n",
141
142
143
        "df = pd.DataFrame(follow_edges)\n",
        "df.to_csv(follow_edges_path, index=False, header=False)\n",
        "print(f\"[user:follow:user] edges are saved into {follow_edges_path}\")"
144
145
146
147
148
149
150
151
152
153
154
      ],
      "metadata": {
        "id": "HcBt4G5BmSjr"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "### Generate feature data for graph\n",
155
        "For feature data, numpy arrays and torch tensors are supported for now. Let's generate feature data for each node/edge type."
156
157
158
159
160
161
162
163
      ],
      "metadata": {
        "id": "kh-4cPtzpcaH"
      }
    },
    {
      "cell_type": "code",
      "source": [
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
        "# Generate node[user] feature in numpy array.\n",
        "node_user_feat_0_path = os.path.join(base_dir, \"node-user-feat-0.npy\")\n",
        "node_user_feat_0 = np.random.rand(num_nodes, 5)\n",
        "print(f\"Part of node[user] feature [feat_0]: {node_user_feat_0[:10, :]}\")\n",
        "np.save(node_user_feat_0_path, node_user_feat_0)\n",
        "print(f\"Node[user] feature [feat_0] is saved to {node_user_feat_0_path}\")\n",
        "\n",
        "# Generate another node[user] feature in torch tensor\n",
        "node_user_feat_1_path = os.path.join(base_dir, \"node-user-feat-1.pt\")\n",
        "node_user_feat_1 = torch.rand(num_nodes, 5)\n",
        "print(f\"Part of node[user] feature [feat_1]: {node_user_feat_1[:10, :]}\")\n",
        "torch.save(node_user_feat_1, node_user_feat_1_path)\n",
        "print(f\"Node[user] feature [feat_1] is saved to {node_user_feat_1_path}\")\n",
        "\n",
        "# Generate node[item] feature in numpy array.\n",
        "node_item_feat_0_path = os.path.join(base_dir, \"node-item-feat-0.npy\")\n",
        "node_item_feat_0 = np.random.rand(num_nodes, 5)\n",
        "print(f\"Part of node[item] feature [feat_0]: {node_item_feat_0[:10, :]}\")\n",
        "np.save(node_item_feat_0_path, node_item_feat_0)\n",
        "print(f\"Node[item] feature [feat_0] is saved to {node_item_feat_0_path}\")\n",
        "\n",
        "# Generate another node[item] feature in torch tensor\n",
        "node_item_feat_1_path = os.path.join(base_dir, \"node-item-feat-1.pt\")\n",
        "node_item_feat_1 = torch.rand(num_nodes, 5)\n",
        "print(f\"Part of node[item] feature [feat_1]: {node_item_feat_1[:10, :]}\")\n",
        "torch.save(node_item_feat_1, node_item_feat_1_path)\n",
        "print(f\"Node[item] feature [feat_1] is saved to {node_item_feat_1_path}\")\n",
        "\n",
        "# Generate edge[user:like:item] feature in numpy array.\n",
        "edge_like_feat_0_path = os.path.join(base_dir, \"edge-like-feat-0.npy\")\n",
        "edge_like_feat_0 = np.random.rand(num_edges, 5)\n",
        "print(f\"Part of edge[user:like:item] feature [feat_0]: {edge_like_feat_0[:10, :]}\")\n",
        "np.save(edge_like_feat_0_path, edge_like_feat_0)\n",
        "print(f\"Edge[user:like:item] feature [feat_0] is saved to {edge_like_feat_0_path}\")\n",
        "\n",
        "# Generate another edge[user:like:item] feature in torch tensor\n",
        "edge_like_feat_1_path = os.path.join(base_dir, \"edge-like-feat-1.pt\")\n",
        "edge_like_feat_1 = torch.rand(num_edges, 5)\n",
        "print(f\"Part of edge[user:like:item] feature [feat_1]: {edge_like_feat_1[:10, :]}\")\n",
        "torch.save(edge_like_feat_1, edge_like_feat_1_path)\n",
        "print(f\"Edge[user:like:item] feature [feat_1] is saved to {edge_like_feat_1_path}\")\n",
        "\n",
        "# Generate edge[user:follow:user] feature in numpy array.\n",
        "edge_follow_feat_0_path = os.path.join(base_dir, \"edge-follow-feat-0.npy\")\n",
        "edge_follow_feat_0 = np.random.rand(num_edges, 5)\n",
        "print(f\"Part of edge[user:follow:user] feature [feat_0]: {edge_follow_feat_0[:10, :]}\")\n",
        "np.save(edge_follow_feat_0_path, edge_follow_feat_0)\n",
        "print(f\"Edge[user:follow:user] feature [feat_0] is saved to {edge_follow_feat_0_path}\")\n",
        "\n",
        "# Generate another edge[user:follow:user] feature in torch tensor\n",
        "edge_follow_feat_1_path = os.path.join(base_dir, \"edge-follow-feat-1.pt\")\n",
        "edge_follow_feat_1 = torch.rand(num_edges, 5)\n",
        "print(f\"Part of edge[user:follow:user] feature [feat_1]: {edge_follow_feat_1[:10, :]}\")\n",
        "torch.save(edge_follow_feat_1, edge_follow_feat_1_path)\n",
        "print(f\"Edge[user:follow:user] feature [feat_1] is saved to {edge_follow_feat_1_path}\")"
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
      ],
      "metadata": {
        "id": "_PVu1u5brBhF"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "### Generate tasks\n",
        "`OnDiskDataset` supports multiple tasks. For each task, we need to prepare training/validation/test sets respectively. Such sets usually vary among different tasks. In this tutorial, let's create a **Node Classification** task and **Link Prediction** task."
      ],
      "metadata": {
        "id": "ZyqgOtsIwzh_"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "#### Node Classification Task\n",
        "For node classification task, we need **node IDs** and corresponding **labels** for each training/validation/test set. Like feature data, numpy arrays and torch tensors are supported for these sets."
      ],
      "metadata": {
        "id": "hVxHaDIfzCkr"
      }
    },
    {
      "cell_type": "code",
      "source": [
249
        "# For illustration, let's generate item sets for each node type.\n",
250
251
252
253
        "num_trains = int(num_nodes * 0.6)\n",
        "num_vals = int(num_nodes * 0.2)\n",
        "num_tests = num_nodes - num_trains - num_vals\n",
        "\n",
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
        "user_ids = np.arange(num_nodes)\n",
        "np.random.shuffle(user_ids)\n",
        "\n",
        "item_ids = np.arange(num_nodes)\n",
        "np.random.shuffle(item_ids)\n",
        "\n",
        "# Train IDs for user.\n",
        "nc_train_user_ids_path = os.path.join(base_dir, \"nc-train-user-ids.npy\")\n",
        "nc_train_user_ids = user_ids[:num_trains]\n",
        "print(f\"Part of train ids[user] for node classification: {nc_train_user_ids[:10]}\")\n",
        "np.save(nc_train_user_ids_path, nc_train_user_ids)\n",
        "print(f\"NC train ids[user] are saved to {nc_train_user_ids_path}\")\n",
        "\n",
        "# Train labels for user.\n",
        "nc_train_user_labels_path = os.path.join(base_dir, \"nc-train-user-labels.pt\")\n",
        "nc_train_user_labels = torch.randint(0, 10, (num_trains,))\n",
        "print(f\"Part of train labels[user] for node classification: {nc_train_user_labels[:10]}\")\n",
        "torch.save(nc_train_user_labels, nc_train_user_labels_path)\n",
        "print(f\"NC train labels[user] are saved to {nc_train_user_labels_path}\")\n",
        "\n",
        "# Train IDs for item.\n",
        "nc_train_item_ids_path = os.path.join(base_dir, \"nc-train-item-ids.npy\")\n",
        "nc_train_item_ids = item_ids[:num_trains]\n",
        "print(f\"Part of train ids[item] for node classification: {nc_train_item_ids[:10]}\")\n",
        "np.save(nc_train_item_ids_path, nc_train_item_ids)\n",
        "print(f\"NC train ids[item] are saved to {nc_train_item_ids_path}\")\n",
        "\n",
        "# Train labels for item.\n",
        "nc_train_item_labels_path = os.path.join(base_dir, \"nc-train-item-labels.pt\")\n",
        "nc_train_item_labels = torch.randint(0, 10, (num_trains,))\n",
        "print(f\"Part of train labels[item] for node classification: {nc_train_item_labels[:10]}\")\n",
        "torch.save(nc_train_item_labels, nc_train_item_labels_path)\n",
        "print(f\"NC train labels[item] are saved to {nc_train_item_labels_path}\")\n",
        "\n",
        "# Val IDs for user.\n",
        "nc_val_user_ids_path = os.path.join(base_dir, \"nc-val-user-ids.npy\")\n",
        "nc_val_user_ids = user_ids[num_trains:num_trains+num_vals]\n",
        "print(f\"Part of val ids[user] for node classification: {nc_val_user_ids[:10]}\")\n",
        "np.save(nc_val_user_ids_path, nc_val_user_ids)\n",
        "print(f\"NC val ids[user] are saved to {nc_val_user_ids_path}\")\n",
        "\n",
        "# Val labels for user.\n",
        "nc_val_user_labels_path = os.path.join(base_dir, \"nc-val-user-labels.pt\")\n",
        "nc_val_user_labels = torch.randint(0, 10, (num_vals,))\n",
        "print(f\"Part of val labels[user] for node classification: {nc_val_user_labels[:10]}\")\n",
        "torch.save(nc_val_user_labels, nc_val_user_labels_path)\n",
        "print(f\"NC val labels[user] are saved to {nc_val_user_labels_path}\")\n",
        "\n",
        "# Val IDs for item.\n",
        "nc_val_item_ids_path = os.path.join(base_dir, \"nc-val-item-ids.npy\")\n",
        "nc_val_item_ids = item_ids[num_trains:num_trains+num_vals]\n",
        "print(f\"Part of val ids[item] for node classification: {nc_val_item_ids[:10]}\")\n",
        "np.save(nc_val_item_ids_path, nc_val_item_ids)\n",
        "print(f\"NC val ids[item] are saved to {nc_val_item_ids_path}\")\n",
        "\n",
        "# Val labels for item.\n",
        "nc_val_item_labels_path = os.path.join(base_dir, \"nc-val-item-labels.pt\")\n",
        "nc_val_item_labels = torch.randint(0, 10, (num_vals,))\n",
        "print(f\"Part of val labels[item] for node classification: {nc_val_item_labels[:10]}\")\n",
        "torch.save(nc_val_item_labels, nc_val_item_labels_path)\n",
        "print(f\"NC val labels[item] are saved to {nc_val_item_labels_path}\")\n",
        "\n",
        "# Test IDs for user.\n",
        "nc_test_user_ids_path = os.path.join(base_dir, \"nc-test-user-ids.npy\")\n",
        "nc_test_user_ids = user_ids[-num_tests:]\n",
        "print(f\"Part of test ids[user] for node classification: {nc_test_user_ids[:10]}\")\n",
        "np.save(nc_test_user_ids_path, nc_test_user_ids)\n",
        "print(f\"NC test ids[user] are saved to {nc_test_user_ids_path}\")\n",
        "\n",
        "# Test labels for user.\n",
        "nc_test_user_labels_path = os.path.join(base_dir, \"nc-test-user-labels.pt\")\n",
        "nc_test_user_labels = torch.randint(0, 10, (num_tests,))\n",
        "print(f\"Part of test labels[user] for node classification: {nc_test_user_labels[:10]}\")\n",
        "torch.save(nc_test_user_labels, nc_test_user_labels_path)\n",
        "print(f\"NC test labels[user] are saved to {nc_test_user_labels_path}\")\n",
        "\n",
        "# Test IDs for item.\n",
        "nc_test_item_ids_path = os.path.join(base_dir, \"nc-test-item-ids.npy\")\n",
        "nc_test_item_ids = item_ids[-num_tests:]\n",
        "print(f\"Part of test ids[item] for node classification: {nc_test_item_ids[:10]}\")\n",
        "np.save(nc_test_item_ids_path, nc_test_item_ids)\n",
        "print(f\"NC test ids[item] are saved to {nc_test_item_ids_path}\")\n",
        "\n",
        "# Test labels for item.\n",
        "nc_test_item_labels_path = os.path.join(base_dir, \"nc-test-item-labels.pt\")\n",
        "nc_test_item_labels = torch.randint(0, 10, (num_tests,))\n",
        "print(f\"Part of test labels[item] for node classification: {nc_test_item_labels[:10]}\")\n",
        "torch.save(nc_test_item_labels, nc_test_item_labels_path)\n",
        "print(f\"NC test labels[item] are saved to {nc_test_item_labels_path}\")"
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
      ],
      "metadata": {
        "id": "S5-fyBbHzTCO"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "#### Link Prediction Task\n",
        "For link prediction task, we need **node pairs** or **negative src/dsts** for each training/validation/test set. Like feature data, numpy arrays and torch tensors are supported for these sets."
      ],
      "metadata": {
        "id": "LhAcDCHQ_KJ0"
      }
    },
    {
      "cell_type": "code",
      "source": [
363
        "# For illustration, let's generate item sets for each edge type.\n",
364
365
366
367
        "num_trains = int(num_edges * 0.6)\n",
        "num_vals = int(num_edges * 0.2)\n",
        "num_tests = num_edges - num_trains - num_vals\n",
        "\n",
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
        "# Train node pairs for user:like:item.\n",
        "lp_train_like_node_pairs_path = os.path.join(base_dir, \"lp-train-like-node-pairs.npy\")\n",
        "lp_train_like_node_pairs = like_edges[:num_trains, :]\n",
        "print(f\"Part of train node pairs[user:like:item] for link prediction: {lp_train_like_node_pairs[:10]}\")\n",
        "np.save(lp_train_like_node_pairs_path, lp_train_like_node_pairs)\n",
        "print(f\"LP train node pairs[user:like:item] are saved to {lp_train_like_node_pairs_path}\")\n",
        "\n",
        "# Train node pairs for user:follow:user.\n",
        "lp_train_follow_node_pairs_path = os.path.join(base_dir, \"lp-train-follow-node-pairs.npy\")\n",
        "lp_train_follow_node_pairs = follow_edges[:num_trains, :]\n",
        "print(f\"Part of train node pairs[user:follow:user] for link prediction: {lp_train_follow_node_pairs[:10]}\")\n",
        "np.save(lp_train_follow_node_pairs_path, lp_train_follow_node_pairs)\n",
        "print(f\"LP train node pairs[user:follow:user] are saved to {lp_train_follow_node_pairs_path}\")\n",
        "\n",
        "# Val node pairs for user:like:item.\n",
        "lp_val_like_node_pairs_path = os.path.join(base_dir, \"lp-val-like-node-pairs.npy\")\n",
        "lp_val_like_node_pairs = like_edges[num_trains:num_trains+num_vals, :]\n",
        "print(f\"Part of val node pairs[user:like:item] for link prediction: {lp_val_like_node_pairs[:10]}\")\n",
        "np.save(lp_val_like_node_pairs_path, lp_val_like_node_pairs)\n",
        "print(f\"LP val node pairs[user:like:item] are saved to {lp_val_like_node_pairs_path}\")\n",
        "\n",
        "# Val negative dsts for user:like:item.\n",
        "lp_val_like_neg_dsts_path = os.path.join(base_dir, \"lp-val-like-neg-dsts.pt\")\n",
        "lp_val_like_neg_dsts = torch.randint(0, num_nodes, (num_vals, 10))\n",
        "print(f\"Part of val negative dsts[user:like:item] for link prediction: {lp_val_like_neg_dsts[:10]}\")\n",
        "torch.save(lp_val_like_neg_dsts, lp_val_like_neg_dsts_path)\n",
        "print(f\"LP val negative dsts[user:like:item] are saved to {lp_val_like_neg_dsts_path}\")\n",
        "\n",
        "# Val node pairs for user:follow:user.\n",
        "lp_val_follow_node_pairs_path = os.path.join(base_dir, \"lp-val-follow-node-pairs.npy\")\n",
        "lp_val_follow_node_pairs = follow_edges[num_trains:num_trains+num_vals, :]\n",
        "print(f\"Part of val node pairs[user:follow:user] for link prediction: {lp_val_follow_node_pairs[:10]}\")\n",
        "np.save(lp_val_follow_node_pairs_path, lp_val_follow_node_pairs)\n",
        "print(f\"LP val node pairs[user:follow:user] are saved to {lp_val_follow_node_pairs_path}\")\n",
        "\n",
        "# Val negative dsts for user:follow:user.\n",
        "lp_val_follow_neg_dsts_path = os.path.join(base_dir, \"lp-val-follow-neg-dsts.pt\")\n",
        "lp_val_follow_neg_dsts = torch.randint(0, num_nodes, (num_vals, 10))\n",
        "print(f\"Part of val negative dsts[user:follow:user] for link prediction: {lp_val_follow_neg_dsts[:10]}\")\n",
        "torch.save(lp_val_follow_neg_dsts, lp_val_follow_neg_dsts_path)\n",
        "print(f\"LP val negative dsts[user:follow:user] are saved to {lp_val_follow_neg_dsts_path}\")\n",
        "\n",
        "# Test node paris for user:like:item.\n",
        "lp_test_like_node_pairs_path = os.path.join(base_dir, \"lp-test-like-node-pairs.npy\")\n",
        "lp_test_like_node_pairs = like_edges[-num_tests, :]\n",
        "print(f\"Part of test node pairs[user:like:item] for link prediction: {lp_test_like_node_pairs[:10]}\")\n",
        "np.save(lp_test_like_node_pairs_path, lp_test_like_node_pairs)\n",
        "print(f\"LP test node pairs[user:like:item] are saved to {lp_test_like_node_pairs_path}\")\n",
        "\n",
        "# Test negative dsts for user:like:item.\n",
        "lp_test_like_neg_dsts_path = os.path.join(base_dir, \"lp-test-like-neg-dsts.pt\")\n",
        "lp_test_like_neg_dsts = torch.randint(0, num_nodes, (num_tests, 10))\n",
        "print(f\"Part of test negative dsts[user:like:item] for link prediction: {lp_test_like_neg_dsts[:10]}\")\n",
        "torch.save(lp_test_like_neg_dsts, lp_test_like_neg_dsts_path)\n",
        "print(f\"LP test negative dsts[user:like:item] are saved to {lp_test_like_neg_dsts_path}\")\n",
        "\n",
        "# Test node paris for user:follow:user.\n",
        "lp_test_follow_node_pairs_path = os.path.join(base_dir, \"lp-test-follow-node-pairs.npy\")\n",
        "lp_test_follow_node_pairs = follow_edges[-num_tests, :]\n",
        "print(f\"Part of test node pairs[user:follow:user] for link prediction: {lp_test_follow_node_pairs[:10]}\")\n",
        "np.save(lp_test_follow_node_pairs_path, lp_test_follow_node_pairs)\n",
        "print(f\"LP test node pairs[user:follow:user] are saved to {lp_test_follow_node_pairs_path}\")\n",
        "\n",
        "# Test negative dsts for user:follow:user.\n",
        "lp_test_follow_neg_dsts_path = os.path.join(base_dir, \"lp-test-follow-neg-dsts.pt\")\n",
        "lp_test_follow_neg_dsts = torch.randint(0, num_nodes, (num_tests, 10))\n",
        "print(f\"Part of test negative dsts[user:follow:user] for link prediction: {lp_test_follow_neg_dsts[:10]}\")\n",
        "torch.save(lp_test_follow_neg_dsts, lp_test_follow_neg_dsts_path)\n",
        "print(f\"LP test negative dsts[user:follow:user] are saved to {lp_test_follow_neg_dsts_path}\")"
437
438
439
440
441
442
443
444
445
446
447
      ],
      "metadata": {
        "id": "u0jCnXIcAQy4"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Organize Data into YAML File\n",
448
449
450
        "Now we need to create a `metadata.yaml` file which contains the paths, dadta types of graph structure, feature data, training/validation/test sets. Please note that all path should be relative to `metadata.yaml`.\n",
        "\n",
        "For heterogeneous graph, we need to specify the node/edge type in **type** fields. For edge type, canonical etype is required which is a string that's concatenated by source node type, etype, and destination node type together with `:`."
451
452
453
454
455
456
457
458
459
460
461
462
      ],
      "metadata": {
        "id": "wbk6-wxRK-6S"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "yaml_content = f\"\"\"\n",
        "    dataset_name: heterogeneous_graph_nc_lp\n",
        "    graph:\n",
        "      nodes:\n",
463
464
465
466
        "        - type: user\n",
        "          num: {num_nodes}\n",
        "        - type: item\n",
        "          num: {num_nodes}\n",
467
        "      edges:\n",
468
469
470
471
472
473
        "        - type: \"user:like:item\"\n",
        "          format: csv\n",
        "          path: {os.path.basename(like_edges_path)}\n",
        "        - type: \"user:follow:user\"\n",
        "          format: csv\n",
        "          path: {os.path.basename(follow_edges_path)}\n",
474
475
        "    feature_data:\n",
        "      - domain: node\n",
476
477
478
479
480
481
482
483
484
485
486
487
488
        "        type: user\n",
        "        name: feat_0\n",
        "        format: numpy\n",
        "        in_memory: true\n",
        "        path: {os.path.basename(node_user_feat_0_path)}\n",
        "      - domain: node\n",
        "        type: user\n",
        "        name: feat_1\n",
        "        format: torch\n",
        "        in_memory: true\n",
        "        path: {os.path.basename(node_user_feat_1_path)}\n",
        "      - domain: node\n",
        "        type: item\n",
489
490
491
        "        name: feat_0\n",
        "        format: numpy\n",
        "        in_memory: true\n",
492
        "        path: {os.path.basename(node_item_feat_0_path)}\n",
493
        "      - domain: node\n",
494
495
496
497
498
499
500
501
502
503
504
505
506
        "        type: item\n",
        "        name: feat_1\n",
        "        format: torch\n",
        "        in_memory: true\n",
        "        path: {os.path.basename(node_item_feat_1_path)}\n",
        "      - domain: edge\n",
        "        type: \"user:like:item\"\n",
        "        name: feat_0\n",
        "        format: numpy\n",
        "        in_memory: true\n",
        "        path: {os.path.basename(edge_like_feat_0_path)}\n",
        "      - domain: edge\n",
        "        type: \"user:like:item\"\n",
507
508
509
        "        name: feat_1\n",
        "        format: torch\n",
        "        in_memory: true\n",
510
        "        path: {os.path.basename(edge_like_feat_1_path)}\n",
511
        "      - domain: edge\n",
512
        "        type: \"user:follow:user\"\n",
513
514
515
        "        name: feat_0\n",
        "        format: numpy\n",
        "        in_memory: true\n",
516
        "        path: {os.path.basename(edge_follow_feat_0_path)}\n",
517
        "      - domain: edge\n",
518
        "        type: \"user:follow:user\"\n",
519
520
521
        "        name: feat_1\n",
        "        format: torch\n",
        "        in_memory: true\n",
522
        "        path: {os.path.basename(edge_follow_feat_1_path)}\n",
523
524
525
526
527
        "    tasks:\n",
        "      - name: node_classification\n",
        "        num_classes: 10\n",
        "        train_set:\n",
        "          - data:\n",
528
529
        "              - type: user\n",
        "                name: seed_nodes\n",
530
531
        "                format: numpy\n",
        "                in_memory: true\n",
532
533
534
        "                path: {os.path.basename(nc_train_user_ids_path)}\n",
        "              - type: user\n",
        "                name: labels\n",
535
536
        "                format: torch\n",
        "                in_memory: true\n",
537
538
539
540
541
542
543
544
545
546
547
        "                path: {os.path.basename(nc_train_user_labels_path)}\n",
        "              - type: item\n",
        "                name: seed_nodes\n",
        "                format: numpy\n",
        "                in_memory: true\n",
        "                path: {os.path.basename(nc_train_item_ids_path)}\n",
        "              - type: item\n",
        "                name: labels\n",
        "                format: torch\n",
        "                in_memory: true\n",
        "                path: {os.path.basename(nc_train_item_labels_path)}\n",
548
549
        "        validation_set:\n",
        "          - data:\n",
550
551
        "              - type: user\n",
        "                name: seed_nodes\n",
552
553
        "                format: numpy\n",
        "                in_memory: true\n",
554
555
556
        "                path: {os.path.basename(nc_val_user_ids_path)}\n",
        "              - type: user\n",
        "                name: labels\n",
557
558
        "                format: torch\n",
        "                in_memory: true\n",
559
560
561
562
563
564
565
566
567
568
569
        "                path: {os.path.basename(nc_val_user_labels_path)}\n",
        "              - type: item\n",
        "                name: seed_nodes\n",
        "                format: numpy\n",
        "                in_memory: true\n",
        "                path: {os.path.basename(nc_val_item_ids_path)}\n",
        "              - type: item\n",
        "                name: labels\n",
        "                format: torch\n",
        "                in_memory: true\n",
        "                path: {os.path.basename(nc_val_item_labels_path)}\n",
570
571
        "        test_set:\n",
        "          - data:\n",
572
573
        "              - type: user\n",
        "                name: seed_nodes\n",
574
575
        "                format: numpy\n",
        "                in_memory: true\n",
576
577
578
        "                path: {os.path.basename(nc_test_user_ids_path)}\n",
        "              - type: user\n",
        "                name: labels\n",
579
580
        "                format: torch\n",
        "                in_memory: true\n",
581
582
583
584
585
586
587
588
589
590
591
        "                path: {os.path.basename(nc_test_user_labels_path)}\n",
        "              - type: item\n",
        "                name: seed_nodes\n",
        "                format: numpy\n",
        "                in_memory: true\n",
        "                path: {os.path.basename(nc_test_item_ids_path)}\n",
        "              - type: item\n",
        "                name: labels\n",
        "                format: torch\n",
        "                in_memory: true\n",
        "                path: {os.path.basename(nc_test_item_labels_path)}\n",
592
593
594
595
        "      - name: link_prediction\n",
        "        num_classes: 10\n",
        "        train_set:\n",
        "          - data:\n",
596
597
598
599
600
601
602
        "              - type: \"user:like:item\"\n",
        "                name: node_pairs\n",
        "                format: numpy\n",
        "                in_memory: true\n",
        "                path: {os.path.basename(lp_train_like_node_pairs_path)}\n",
        "              - type: \"user:follow:user\"\n",
        "                name: node_pairs\n",
603
604
        "                format: numpy\n",
        "                in_memory: true\n",
605
        "                path: {os.path.basename(lp_train_follow_node_pairs_path)}\n",
606
607
        "        validation_set:\n",
        "          - data:\n",
608
609
        "              - type: \"user:like:item\"\n",
        "                name: node_pairs\n",
610
611
        "                format: numpy\n",
        "                in_memory: true\n",
612
613
614
        "                path: {os.path.basename(lp_val_like_node_pairs_path)}\n",
        "              - type: \"user:like:item\"\n",
        "                name: negative_dsts\n",
615
616
        "                format: torch\n",
        "                in_memory: true\n",
617
618
619
620
621
622
623
624
625
626
627
        "                path: {os.path.basename(lp_val_like_neg_dsts_path)}\n",
        "              - type: \"user:follow:user\"\n",
        "                name: node_pairs\n",
        "                format: numpy\n",
        "                in_memory: true\n",
        "                path: {os.path.basename(lp_val_follow_node_pairs_path)}\n",
        "              - type: \"user:follow:user\"\n",
        "                name: negative_dsts\n",
        "                format: torch\n",
        "                in_memory: true\n",
        "                path: {os.path.basename(lp_val_follow_neg_dsts_path)}\n",
628
629
        "        test_set:\n",
        "          - data:\n",
630
631
632
633
634
635
636
637
638
639
640
641
        "              - type: \"user:like:item\"\n",
        "                name: node_pairs\n",
        "                format: numpy\n",
        "                in_memory: true\n",
        "                path: {os.path.basename(lp_test_like_node_pairs_path)}\n",
        "              - type: \"user:like:item\"\n",
        "                name: negative_dsts\n",
        "                format: torch\n",
        "                in_memory: true\n",
        "                path: {os.path.basename(lp_test_like_neg_dsts_path)}\n",
        "              - type: \"user:follow:user\"\n",
        "                name: node_pairs\n",
642
643
        "                format: numpy\n",
        "                in_memory: true\n",
644
645
646
        "                path: {os.path.basename(lp_test_follow_node_pairs_path)}\n",
        "              - type: \"user:follow:user\"\n",
        "                name: negative_dsts\n",
647
648
        "                format: torch\n",
        "                in_memory: true\n",
649
        "                path: {os.path.basename(lp_test_follow_neg_dsts_path)}\n",
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
        "\"\"\"\n",
        "metadata_path = os.path.join(base_dir, \"metadata.yaml\")\n",
        "with open(metadata_path, \"w\") as f:\n",
        "  f.write(yaml_content)"
      ],
      "metadata": {
        "id": "ddGTWW61Lpwp"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Instantiate `OnDiskDataset`\n",
        "Now we're ready to load dataset via `dgl.graphbolt.OnDiskDataset`. When instantiating, we just pass in the base directory where `metadata.yaml` file lies.\n",
        "\n",
        "During first instantiation, GraphBolt preprocesses the raw data such as constructing `FusedCSCSamplingGraph` from edges. All data including graph, feature data, training/validation/test sets are put into `preprocessed` directory after preprocessing. Any following dataset loading will skip the preprocess stage.\n",
        "\n",
        "After preprocessing, `load()` is required to be called explicitly in order to load graph, feature data and tasks."
      ],
      "metadata": {
        "id": "kEfybHGhOW7O"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "dataset = gb.OnDiskDataset(base_dir).load()\n",
        "graph = dataset.graph\n",
        "print(f\"Loaded graph: {graph}\")\n",
        "\n",
        "feature = dataset.feature\n",
        "print(f\"Loaded feature store: {feature}\")\n",
        "\n",
        "tasks = dataset.tasks\n",
        "nc_task = tasks[0]\n",
        "print(f\"Loaded node classification task: {nc_task}\")\n",
        "lp_task = tasks[1]\n",
        "print(f\"Loaded link prediction task: {lp_task}\")"
      ],
      "metadata": {
        "id": "W58CZoSzOiyo"
      },
      "execution_count": null,
      "outputs": []
696
697
    }
  ]
698
}