test_graph_batch.py 2.81 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import networkx as nx
import dgl
import torch
import numpy as np

def tree1():
    """Generate a tree
         0
        / \
       1   2
      / \
     3   4
    Edges are from leaves to root.
    """
    g = dgl.DGLGraph()
    g.add_node(0)
    g.add_node(1)
    g.add_node(2)
    g.add_node(3)
    g.add_node(4)
    g.add_edge(3, 1)
    g.add_edge(4, 1)
    g.add_edge(1, 0)
    g.add_edge(2, 0)
    g.set_n_repr(torch.Tensor([0, 1, 2, 3, 4]))
    return g

def tree2():
    """Generate a tree
         1
        / \
       4   3
      / \
     2   0
    Edges are from leaves to root.
    """
    g = dgl.DGLGraph()
    g.add_node(0)
    g.add_node(1)
    g.add_node(2)
    g.add_node(3)
    g.add_node(4)
    g.add_edge(2, 4)
    g.add_edge(0, 4)
    g.add_edge(4, 1)
    g.add_edge(3, 1)
    g.set_n_repr(torch.Tensor([0, 1, 2, 3, 4]))
    return g

def test_batch_unbatch():
    t1 = tree1()
    t2 = tree2()
    f1 = t1.get_n_repr()
    f2 = t2.get_n_repr()

    bg = dgl.batch([t1, t2])
    dgl.unbatch(bg)

    assert(f1.equal(t1.get_n_repr()))
    assert(f2.equal(t2.get_n_repr()))


def test_batch_sendrecv():
    t1 = tree1()
    t2 = tree2()

    bg = dgl.batch([t1, t2])
    bg.register_message_func(lambda src, edge: src, batchable=True)
    bg.register_reduce_func(lambda node, msgs: torch.sum(msgs, 1), batchable=True)
    bg.register_update_func(lambda node, accum: accum, batchable=True)
    e1 = [(3, 1), (4, 1)]
    e2 = [(2, 4), (0, 4)]

    u1, v1 = bg.query_new_edge(t1, *zip(*e1))
    u2, v2 = bg.query_new_edge(t2, *zip(*e2))
    u = np.concatenate((u1, u2)).tolist()
    v = np.concatenate((v1, v2)).tolist()

    bg.sendto(u, v)
    bg.recv(v)

    dgl.unbatch(bg)
    assert t1.get_n_repr()[1] == 7
    assert t2.get_n_repr()[4] == 2


def test_batch_propagate():
    t1 = tree1()
    t2 = tree2()

    bg = dgl.batch([t1, t2])
    bg.register_message_func(lambda src, edge: src, batchable=True)
    bg.register_reduce_func(lambda node, msgs: torch.sum(msgs, 1), batchable=True)
    bg.register_update_func(lambda node, accum: accum, batchable=True)
    # get leaves.

    order = []

    # step 1
    e1 = [(3, 1), (4, 1)]
    e2 = [(2, 4), (0, 4)]
    u1, v1 = bg.query_new_edge(t1, *zip(*e1))
    u2, v2 = bg.query_new_edge(t2, *zip(*e2))
    u = np.concatenate((u1, u2)).tolist()
    v = np.concatenate((v1, v2)).tolist()
    order.append((u, v))

    # step 2
    e1 = [(1, 0), (2, 0)]
    e2 = [(4, 1), (3, 1)]
    u1, v1 = bg.query_new_edge(t1, *zip(*e1))
    u2, v2 = bg.query_new_edge(t2, *zip(*e2))
    u = np.concatenate((u1, u2)).tolist()
    v = np.concatenate((v1, v2)).tolist()
    order.append((u, v))

    bg.propagate(iterator=order)
    dgl.unbatch(bg)

    assert t1.get_n_repr()[0] == 9
    assert t2.get_n_repr()[1] == 5


if __name__ == '__main__':
    test_batch_unbatch()
    test_batch_sendrecv()
    test_batch_propagate()