test_nn.py 56.3 KB
Newer Older
1
import io
2
3
4
5
import torch as th
import networkx as nx
import dgl
import dgl.nn.pytorch as nn
6
import dgl.function as fn
7
import backend as F
8
import pytest
9
from test_utils.graph_cases import get_cases, random_graph, random_bipartite, random_dglgraph
nv-dlasalle's avatar
nv-dlasalle committed
10
from test_utils import parametrize_idtype
11
from copy import deepcopy
12
import pickle
13

14
15
import scipy as sp

16
17
tmp_buffer = io.BytesIO()

18
19
20
21
22
def _AXWb(A, X, W, b):
    X = th.matmul(X, W)
    Y = th.matmul(A, X.view(X.shape[0], -1)).view_as(X)
    return Y + b

23
24
@pytest.mark.parametrize('out_dim', [1, 2])
def test_graph_conv0(out_dim):
25
    g = dgl.DGLGraph(nx.path_graph(3)).to(F.ctx())
26
    ctx = F.ctx()
27
    adj = g.adjacency_matrix(transpose=True, ctx=ctx)
28

29
    conv = nn.GraphConv(5, out_dim, norm='none', bias=True)
30
    conv = conv.to(ctx)
31
    print(conv)
32
33
34
35
36

    # test pickle
    th.save(conv, tmp_buffer)


37
    # test#1: basic
38
    h0 = F.ones((3, 5))
39
    h1 = conv(g, h0)
40
41
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
42
    assert F.allclose(h1, _AXWb(adj, h0, conv.weight, conv.bias))
43
    # test#2: more-dim
44
    h0 = F.ones((3, 5, 5))
45
    h1 = conv(g, h0)
46
47
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
48
    assert F.allclose(h1, _AXWb(adj, h0, conv.weight, conv.bias))
49

50
    conv = nn.GraphConv(5, out_dim)
51
    conv = conv.to(ctx)
52
    # test#3: basic
53
    h0 = F.ones((3, 5))
54
    h1 = conv(g, h0)
55
56
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
57
    # test#4: basic
58
    h0 = F.ones((3, 5, 5))
59
    h1 = conv(g, h0)
60
61
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
62

63
    conv = nn.GraphConv(5, out_dim)
64
    conv = conv.to(ctx)
65
    # test#3: basic
66
    h0 = F.ones((3, 5))
67
    h1 = conv(g, h0)
68
69
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
70
    # test#4: basic
71
    h0 = F.ones((3, 5, 5))
72
    h1 = conv(g, h0)
73
74
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
75
76
77
78
79

    # test rest_parameters
    old_weight = deepcopy(conv.weight.data)
    conv.reset_parameters()
    new_weight = conv.weight.data
80
    assert not F.allclose(old_weight, new_weight)
81

nv-dlasalle's avatar
nv-dlasalle committed
82
@parametrize_idtype
83
@pytest.mark.parametrize('g', get_cases(['homo', 'bipartite'], exclude=['zero-degree', 'dglgraph']))
84
@pytest.mark.parametrize('norm', ['none', 'both', 'right', 'left'])
85
86
@pytest.mark.parametrize('weight', [True, False])
@pytest.mark.parametrize('bias', [True, False])
87
88
@pytest.mark.parametrize('out_dim', [1, 2])
def test_graph_conv(idtype, g, norm, weight, bias, out_dim):
89
90
    # Test one tensor input
    g = g.astype(idtype).to(F.ctx())
91
92
    conv = nn.GraphConv(5, out_dim, norm=norm, weight=weight, bias=bias).to(F.ctx())
    ext_w = F.randn((5, out_dim)).to(F.ctx())
93
94
    nsrc = g.number_of_src_nodes()
    ndst = g.number_of_dst_nodes()
95
96
    h = F.randn((nsrc, 5)).to(F.ctx())
    if weight:
97
        h_out = conv(g, h)
98
    else:
99
        h_out = conv(g, h, weight=ext_w)
100
    assert h_out.shape == (ndst, out_dim)
101

nv-dlasalle's avatar
nv-dlasalle committed
102
@parametrize_idtype
103
104
105
106
@pytest.mark.parametrize('g', get_cases(['has_scalar_e_feature'], exclude=['zero-degree', 'dglgraph']))
@pytest.mark.parametrize('norm', ['none', 'both', 'right'])
@pytest.mark.parametrize('weight', [True, False])
@pytest.mark.parametrize('bias', [True, False])
107
108
@pytest.mark.parametrize('out_dim', [1, 2])
def test_graph_conv_e_weight(idtype, g, norm, weight, bias, out_dim):
109
    g = g.astype(idtype).to(F.ctx())
110
111
    conv = nn.GraphConv(5, out_dim, norm=norm, weight=weight, bias=bias).to(F.ctx())
    ext_w = F.randn((5, out_dim)).to(F.ctx())
112
113
114
115
116
117
118
119
    nsrc = g.number_of_src_nodes()
    ndst = g.number_of_dst_nodes()
    h = F.randn((nsrc, 5)).to(F.ctx())
    e_w = g.edata['scalar_w']
    if weight:
        h_out = conv(g, h, edge_weight=e_w)
    else:
        h_out = conv(g, h, weight=ext_w, edge_weight=e_w)
120
    assert h_out.shape == (ndst, out_dim)
121

nv-dlasalle's avatar
nv-dlasalle committed
122
@parametrize_idtype
123
124
125
126
@pytest.mark.parametrize('g', get_cases(['has_scalar_e_feature'], exclude=['zero-degree', 'dglgraph']))
@pytest.mark.parametrize('norm', ['none', 'both', 'right'])
@pytest.mark.parametrize('weight', [True, False])
@pytest.mark.parametrize('bias', [True, False])
127
128
@pytest.mark.parametrize('out_dim', [1, 2])
def test_graph_conv_e_weight_norm(idtype, g, norm, weight, bias, out_dim):
129
    g = g.astype(idtype).to(F.ctx())
130
    conv = nn.GraphConv(5, out_dim, norm=norm, weight=weight, bias=bias).to(F.ctx())
131
132
133
134

    # test pickle
    th.save(conv, tmp_buffer)

135
    ext_w = F.randn((5, out_dim)).to(F.ctx())
136
137
138
139
140
141
142
143
144
    nsrc = g.number_of_src_nodes()
    ndst = g.number_of_dst_nodes()
    h = F.randn((nsrc, 5)).to(F.ctx())
    edgenorm = nn.EdgeWeightNorm(norm=norm)
    norm_weight = edgenorm(g, g.edata['scalar_w'])
    if weight:
        h_out = conv(g, h, edge_weight=norm_weight)
    else:
        h_out = conv(g, h, weight=ext_w, edge_weight=norm_weight)
145
    assert h_out.shape == (ndst, out_dim)
146

nv-dlasalle's avatar
nv-dlasalle committed
147
@parametrize_idtype
148
149
150
151
@pytest.mark.parametrize('g', get_cases(['bipartite'], exclude=['zero-degree', 'dglgraph']))
@pytest.mark.parametrize('norm', ['none', 'both', 'right'])
@pytest.mark.parametrize('weight', [True, False])
@pytest.mark.parametrize('bias', [True, False])
152
153
@pytest.mark.parametrize('out_dim', [1, 2])
def test_graph_conv_bi(idtype, g, norm, weight, bias, out_dim):
154
155
    # Test a pair of tensor inputs
    g = g.astype(idtype).to(F.ctx())
156
    conv = nn.GraphConv(5, out_dim, norm=norm, weight=weight, bias=bias).to(F.ctx())
Mufei Li's avatar
Mufei Li committed
157

158
159
160
    # test pickle
    th.save(conv, tmp_buffer)

161
    ext_w = F.randn((5, out_dim)).to(F.ctx())
162
163
164
    nsrc = g.number_of_src_nodes()
    ndst = g.number_of_dst_nodes()
    h = F.randn((nsrc, 5)).to(F.ctx())
165
    h_dst = F.randn((ndst, out_dim)).to(F.ctx())
166
167
168
169
    if weight:
        h_out = conv(g, (h, h_dst))
    else:
        h_out = conv(g, (h, h_dst), weight=ext_w)
170
    assert h_out.shape == (ndst, out_dim)
171

172
173
174
175
176
177
178
179
180
181
182
183
def _S2AXWb(A, N, X, W, b):
    X1 = X * N
    X1 = th.matmul(A, X1.view(X1.shape[0], -1))
    X1 = X1 * N
    X2 = X1 * N
    X2 = th.matmul(A, X2.view(X2.shape[0], -1))
    X2 = X2 * N
    X = th.cat([X, X1, X2], dim=-1)
    Y = th.matmul(X, W.rot90())

    return Y + b

184
185
@pytest.mark.parametrize('out_dim', [1, 2])
def test_tagconv(out_dim):
186
    g = dgl.DGLGraph(nx.path_graph(3))
187
    g = g.to(F.ctx())
188
    ctx = F.ctx()
189
    adj = g.adjacency_matrix(transpose=True, ctx=ctx)
190
191
    norm = th.pow(g.in_degrees().float(), -0.5)

192
    conv = nn.TAGConv(5, out_dim, bias=True)
193
    conv = conv.to(ctx)
194
    print(conv)
Mufei Li's avatar
Mufei Li committed
195

196
197
    # test pickle
    th.save(conv, tmp_buffer)
198
199
200

    # test#1: basic
    h0 = F.ones((3, 5))
201
    h1 = conv(g, h0)
202
203
204
205
206
207
208
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    shp = norm.shape + (1,) * (h0.dim() - 1)
    norm = th.reshape(norm, shp).to(ctx)

    assert F.allclose(h1, _S2AXWb(adj, norm, h0, conv.lin.weight, conv.lin.bias))

209
    conv = nn.TAGConv(5, out_dim)
210
    conv = conv.to(ctx)
211

212
213
    # test#2: basic
    h0 = F.ones((3, 5))
214
    h1 = conv(g, h0)
215
    assert h1.shape[-1] == out_dim
216

217
    # test reset_parameters
218
219
220
221
222
    old_weight = deepcopy(conv.lin.weight.data)
    conv.reset_parameters()
    new_weight = conv.lin.weight.data
    assert not F.allclose(old_weight, new_weight)

223
def test_set2set():
224
    ctx = F.ctx()
225
    g = dgl.DGLGraph(nx.path_graph(10))
226
    g = g.to(F.ctx())
227
228

    s2s = nn.Set2Set(5, 3, 3) # hidden size 5, 3 iters, 3 layers
229
    s2s = s2s.to(ctx)
230
231
232
    print(s2s)

    # test#1: basic
233
    h0 = F.randn((g.number_of_nodes(), 5))
234
    h1 = s2s(g, h0)
235
    assert h1.shape[0] == 1 and h1.shape[1] == 10 and h1.dim() == 2
236
237

    # test#2: batched graph
238
239
    g1 = dgl.DGLGraph(nx.path_graph(11)).to(F.ctx())
    g2 = dgl.DGLGraph(nx.path_graph(5)).to(F.ctx())
240
    bg = dgl.batch([g, g1, g2])
241
    h0 = F.randn((bg.number_of_nodes(), 5))
242
    h1 = s2s(bg, h0)
243
244
245
    assert h1.shape[0] == 3 and h1.shape[1] == 10 and h1.dim() == 2

def test_glob_att_pool():
246
    ctx = F.ctx()
247
    g = dgl.DGLGraph(nx.path_graph(10))
248
    g = g.to(F.ctx())
249
250

    gap = nn.GlobalAttentionPooling(th.nn.Linear(5, 1), th.nn.Linear(5, 10))
251
    gap = gap.to(ctx)
252
253
    print(gap)

254
255
256
    # test pickle
    th.save(gap, tmp_buffer)

257
    # test#1: basic
258
    h0 = F.randn((g.number_of_nodes(), 5))
259
    h1 = gap(g, h0)
260
    assert h1.shape[0] == 1 and h1.shape[1] == 10 and h1.dim() == 2
261
262
263

    # test#2: batched graph
    bg = dgl.batch([g, g, g, g])
264
    h0 = F.randn((bg.number_of_nodes(), 5))
265
    h1 = gap(bg, h0)
266
267
268
    assert h1.shape[0] == 4 and h1.shape[1] == 10 and h1.dim() == 2

def test_simple_pool():
269
    ctx = F.ctx()
270
    g = dgl.DGLGraph(nx.path_graph(15))
271
    g = g.to(F.ctx())
272
273
274
275
276
277
278
279

    sum_pool = nn.SumPooling()
    avg_pool = nn.AvgPooling()
    max_pool = nn.MaxPooling()
    sort_pool = nn.SortPooling(10) # k = 10
    print(sum_pool, avg_pool, max_pool, sort_pool)

    # test#1: basic
280
    h0 = F.randn((g.number_of_nodes(), 5))
281
282
283
284
    sum_pool = sum_pool.to(ctx)
    avg_pool = avg_pool.to(ctx)
    max_pool = max_pool.to(ctx)
    sort_pool = sort_pool.to(ctx)
285
    h1 = sum_pool(g, h0)
286
    assert F.allclose(F.squeeze(h1, 0), F.sum(h0, 0))
287
    h1 = avg_pool(g, h0)
288
    assert F.allclose(F.squeeze(h1, 0), F.mean(h0, 0))
289
    h1 = max_pool(g, h0)
290
    assert F.allclose(F.squeeze(h1, 0), F.max(h0, 0))
291
    h1 = sort_pool(g, h0)
292
    assert h1.shape[0] == 1 and h1.shape[1] == 10 * 5 and h1.dim() == 2
293
294

    # test#2: batched graph
295
    g_ = dgl.DGLGraph(nx.path_graph(5)).to(F.ctx())
296
    bg = dgl.batch([g, g_, g, g_, g])
297
    h0 = F.randn((bg.number_of_nodes(), 5))
298
    h1 = sum_pool(bg, h0)
299
300
301
302
303
304
    truth = th.stack([F.sum(h0[:15], 0),
                      F.sum(h0[15:20], 0),
                      F.sum(h0[20:35], 0),
                      F.sum(h0[35:40], 0),
                      F.sum(h0[40:55], 0)], 0)
    assert F.allclose(h1, truth)
305

306
    h1 = avg_pool(bg, h0)
307
308
309
310
311
312
    truth = th.stack([F.mean(h0[:15], 0),
                      F.mean(h0[15:20], 0),
                      F.mean(h0[20:35], 0),
                      F.mean(h0[35:40], 0),
                      F.mean(h0[40:55], 0)], 0)
    assert F.allclose(h1, truth)
313

314
    h1 = max_pool(bg, h0)
315
316
317
318
319
320
    truth = th.stack([F.max(h0[:15], 0),
                      F.max(h0[15:20], 0),
                      F.max(h0[20:35], 0),
                      F.max(h0[35:40], 0),
                      F.max(h0[40:55], 0)], 0)
    assert F.allclose(h1, truth)
321

322
    h1 = sort_pool(bg, h0)
323
324
325
    assert h1.shape[0] == 5 and h1.shape[1] == 10 * 5 and h1.dim() == 2

def test_set_trans():
326
    ctx = F.ctx()
327
328
329
330
331
    g = dgl.DGLGraph(nx.path_graph(15))

    st_enc_0 = nn.SetTransformerEncoder(50, 5, 10, 100, 2, 'sab')
    st_enc_1 = nn.SetTransformerEncoder(50, 5, 10, 100, 2, 'isab', 3)
    st_dec = nn.SetTransformerDecoder(50, 5, 10, 100, 2, 4)
332
333
334
    st_enc_0 = st_enc_0.to(ctx)
    st_enc_1 = st_enc_1.to(ctx)
    st_dec = st_dec.to(ctx)
335
336
337
    print(st_enc_0, st_enc_1, st_dec)

    # test#1: basic
338
    h0 = F.randn((g.number_of_nodes(), 50))
339
    h1 = st_enc_0(g, h0)
340
    assert h1.shape == h0.shape
341
    h1 = st_enc_1(g, h0)
342
    assert h1.shape == h0.shape
343
    h2 = st_dec(g, h1)
344
    assert h2.shape[0] == 1 and h2.shape[1] == 200 and h2.dim() == 2
345
346
347
348
349

    # test#2: batched graph
    g1 = dgl.DGLGraph(nx.path_graph(5))
    g2 = dgl.DGLGraph(nx.path_graph(10))
    bg = dgl.batch([g, g1, g2])
350
    h0 = F.randn((bg.number_of_nodes(), 50))
351
    h1 = st_enc_0(bg, h0)
352
    assert h1.shape == h0.shape
353
    h1 = st_enc_1(bg, h0)
354
355
    assert h1.shape == h0.shape

356
    h2 = st_dec(bg, h1)
357
358
    assert h2.shape[0] == 3 and h2.shape[1] == 200 and h2.dim() == 2

nv-dlasalle's avatar
nv-dlasalle committed
359
@parametrize_idtype
360
361
@pytest.mark.parametrize('O', [1, 8, 32])
def test_rgcn(idtype, O):
Minjie Wang's avatar
Minjie Wang committed
362
363
    ctx = F.ctx()
    etype = []
364
365
    g = dgl.from_scipy(sp.sparse.random(100, 100, density=0.1))
    g = g.astype(idtype).to(F.ctx())
Minjie Wang's avatar
Minjie Wang committed
366
367
368
369
370
371
372
373
374
    # 5 etypes
    R = 5
    for i in range(g.number_of_edges()):
        etype.append(i % 5)
    B = 2
    I = 10

    h = th.randn((100, I)).to(ctx)
    r = th.tensor(etype).to(ctx)
xiang song(charlie.song)'s avatar
xiang song(charlie.song) committed
375
    norm = th.rand((g.number_of_edges(), 1)).to(ctx)
376
377
378
    sorted_r, idx = th.sort(r)
    sorted_g = dgl.reorder_graph(g, edge_permute_algo='custom', permute_config={'edges_perm' : idx.to(idtype)})
    sorted_norm = norm[idx]
Minjie Wang's avatar
Minjie Wang committed
379

380
381
    rgc = nn.RelGraphConv(I, O, R).to(ctx)
    th.save(rgc, tmp_buffer)  # test pickle
Minjie Wang's avatar
Minjie Wang committed
382
    rgc_basis = nn.RelGraphConv(I, O, R, "basis", B).to(ctx)
383
    th.save(rgc_basis, tmp_buffer)  # test pickle
384
385
    if O % B == 0:
        rgc_bdd = nn.RelGraphConv(I, O, R, "bdd", B).to(ctx)
386
        th.save(rgc_bdd, tmp_buffer)  # test pickle
387

388
389
390
391
392
    # basic usage
    h_new = rgc(g, h, r)
    assert h_new.shape == (100, O)
    h_new_basis = rgc_basis(g, h, r)
    assert h_new_basis.shape == (100, O)
393
    if O % B == 0:
394
395
396
397
398
399
400
401
402
403
404
        h_new_bdd = rgc_bdd(g, h, r)
        assert h_new_bdd.shape == (100, O)

    # sorted input
    h_new_sorted = rgc(sorted_g, h, sorted_r, presorted=True)
    assert th.allclose(h_new, h_new_sorted, atol=1e-4, rtol=1e-4)
    h_new_basis_sorted = rgc_basis(sorted_g, h, sorted_r, presorted=True)
    assert th.allclose(h_new_basis, h_new_basis_sorted, atol=1e-4, rtol=1e-4)
    if O % B == 0:
        h_new_bdd_sorted = rgc_bdd(sorted_g, h, sorted_r, presorted=True)
        assert th.allclose(h_new_bdd, h_new_bdd_sorted, atol=1e-4, rtol=1e-4)
405

406
407
408
    # norm input
    h_new = rgc(g, h, r, norm)
    assert h_new.shape == (100, O)
409
    h_new = rgc_basis(g, h, r, norm)
410
    assert h_new.shape == (100, O)
411
412
    if O % B == 0:
        h_new = rgc_bdd(g, h, r, norm)
413
        assert h_new.shape == (100, O)
414

415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
@parametrize_idtype
@pytest.mark.parametrize('O', [1, 10, 40])
def test_rgcn_default_nbasis(idtype, O):
    ctx = F.ctx()
    etype = []
    g = dgl.from_scipy(sp.sparse.random(100, 100, density=0.1))
    g = g.astype(idtype).to(F.ctx())
    # 5 etypes
    R = 5
    for i in range(g.number_of_edges()):
        etype.append(i % 5)
    I = 10

    h = th.randn((100, I)).to(ctx)
    r = th.tensor(etype).to(ctx)
    norm = th.rand((g.number_of_edges(), 1)).to(ctx)
    sorted_r, idx = th.sort(r)
    sorted_g = dgl.reorder_graph(g, edge_permute_algo='custom', permute_config={'edges_perm' : idx.to(idtype)})
    sorted_norm = norm[idx]

    rgc = nn.RelGraphConv(I, O, R).to(ctx)
    th.save(rgc, tmp_buffer)  # test pickle
    rgc_basis = nn.RelGraphConv(I, O, R, "basis").to(ctx)
    th.save(rgc_basis, tmp_buffer)  # test pickle
    if O % R == 0:
        rgc_bdd = nn.RelGraphConv(I, O, R, "bdd").to(ctx)
        th.save(rgc_bdd, tmp_buffer)  # test pickle

    # basic usage
    h_new = rgc(g, h, r)
    assert h_new.shape == (100, O)
    h_new_basis = rgc_basis(g, h, r)
    assert h_new_basis.shape == (100, O)
    if O % R == 0:
        h_new_bdd = rgc_bdd(g, h, r)
        assert h_new_bdd.shape == (100, O)

    # sorted input
    h_new_sorted = rgc(sorted_g, h, sorted_r, presorted=True)
    assert th.allclose(h_new, h_new_sorted, atol=1e-4, rtol=1e-4)
    h_new_basis_sorted = rgc_basis(sorted_g, h, sorted_r, presorted=True)
    assert th.allclose(h_new_basis, h_new_basis_sorted, atol=1e-4, rtol=1e-4)
    if O % R == 0:
        h_new_bdd_sorted = rgc_bdd(sorted_g, h, sorted_r, presorted=True)
        assert th.allclose(h_new_bdd, h_new_bdd_sorted, atol=1e-4, rtol=1e-4)

    # norm input
    h_new = rgc(g, h, r, norm)
    assert h_new.shape == (100, O)
    h_new = rgc_basis(g, h, r, norm)
    assert h_new.shape == (100, O)
    if O % R == 0:
        h_new = rgc_bdd(g, h, r, norm)
        assert h_new.shape == (100, O)
469

nv-dlasalle's avatar
nv-dlasalle committed
470
@parametrize_idtype
471
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite'], exclude=['zero-degree']))
472
@pytest.mark.parametrize('out_dim', [1, 5])
473
474
@pytest.mark.parametrize('num_heads', [1, 4])
def test_gat_conv(g, idtype, out_dim, num_heads):
475
    g = g.astype(idtype).to(F.ctx())
476
    ctx = F.ctx()
477
    gat = nn.GATConv(5, out_dim, num_heads)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
478
    feat = F.randn((g.number_of_src_nodes(), 5))
479
    gat = gat.to(ctx)
480
    h = gat(g, feat)
481
482
483
484

    # test pickle
    th.save(gat, tmp_buffer)

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
485
    assert h.shape == (g.number_of_dst_nodes(), num_heads, out_dim)
486
    _, a = gat(g, feat, get_attention=True)
487
    assert a.shape == (g.number_of_edges(), num_heads, 1)
488

489
490
491
492
493
    # test residual connection
    gat = nn.GATConv(5, out_dim, num_heads, residual=True)
    gat = gat.to(ctx)
    h = gat(g, feat)

nv-dlasalle's avatar
nv-dlasalle committed
494
@parametrize_idtype
495
@pytest.mark.parametrize('g', get_cases(['bipartite'], exclude=['zero-degree']))
496
497
498
@pytest.mark.parametrize('out_dim', [1, 2])
@pytest.mark.parametrize('num_heads', [1, 4])
def test_gat_conv_bi(g, idtype, out_dim, num_heads):
499
500
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
501
    gat = nn.GATConv(5, out_dim, num_heads)
502
    feat = (F.randn((g.number_of_src_nodes(), 5)), F.randn((g.number_of_dst_nodes(), 5)))
503
504
    gat = gat.to(ctx)
    h = gat(g, feat)
505
    assert h.shape == (g.number_of_dst_nodes(), num_heads, out_dim)
506
    _, a = gat(g, feat, get_attention=True)
507
    assert a.shape == (g.number_of_edges(), num_heads, 1)
508

nv-dlasalle's avatar
nv-dlasalle committed
509
@parametrize_idtype
Shaked Brody's avatar
Shaked Brody committed
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite'], exclude=['zero-degree']))
@pytest.mark.parametrize('out_dim', [1, 5])
@pytest.mark.parametrize('num_heads', [1, 4])
def test_gatv2_conv(g, idtype, out_dim, num_heads):
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
    gat = nn.GATv2Conv(5, out_dim, num_heads)
    feat = F.randn((g.number_of_src_nodes(), 5))
    gat = gat.to(ctx)
    h = gat(g, feat)

    # test pickle
    th.save(gat, tmp_buffer)

    assert h.shape == (g.number_of_dst_nodes(), num_heads, out_dim)
    _, a = gat(g, feat, get_attention=True)
    assert a.shape == (g.number_of_edges(), num_heads, 1)

    # test residual connection
    gat = nn.GATConv(5, out_dim, num_heads, residual=True)
    gat = gat.to(ctx)
    h = gat(g, feat)

nv-dlasalle's avatar
nv-dlasalle committed
533
@parametrize_idtype
Shaked Brody's avatar
Shaked Brody committed
534
535
536
537
538
539
540
541
542
543
544
545
546
547
@pytest.mark.parametrize('g', get_cases(['bipartite'], exclude=['zero-degree']))
@pytest.mark.parametrize('out_dim', [1, 2])
@pytest.mark.parametrize('num_heads', [1, 4])
def test_gatv2_conv_bi(g, idtype, out_dim, num_heads):
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
    gat = nn.GATv2Conv(5, out_dim, num_heads)
    feat = (F.randn((g.number_of_src_nodes(), 5)), F.randn((g.number_of_dst_nodes(), 5)))
    gat = gat.to(ctx)
    h = gat(g, feat)
    assert h.shape == (g.number_of_dst_nodes(), num_heads, out_dim)
    _, a = gat(g, feat, get_attention=True)
    assert a.shape == (g.number_of_edges(), num_heads, 1)

nv-dlasalle's avatar
nv-dlasalle committed
548
@parametrize_idtype
549
550
551
552
553
554
@pytest.mark.parametrize('g', get_cases(['homo'], exclude=['zero-degree']))
@pytest.mark.parametrize('out_node_feats', [1, 5])
@pytest.mark.parametrize('out_edge_feats', [1, 5])
@pytest.mark.parametrize('num_heads', [1, 4])
def test_egat_conv(g, idtype, out_node_feats, out_edge_feats, num_heads):
    g = g.astype(idtype).to(F.ctx())
Mufei Li's avatar
Mufei Li committed
555
    ctx = F.ctx()
556
557
558
559
560
561
562
563
564
    egat = nn.EGATConv(in_node_feats=10,
                       in_edge_feats=5,
                       out_node_feats=out_node_feats,
                       out_edge_feats=out_edge_feats,
                       num_heads=num_heads)
    nfeat = F.randn((g.number_of_nodes(), 10))
    efeat = F.randn((g.number_of_edges(), 5))
    egat = egat.to(ctx)
    h, f = egat(g, nfeat, efeat)
565

566
    th.save(egat, tmp_buffer)
567

568
569
570
571
    assert h.shape == (g.number_of_nodes(), num_heads, out_node_feats)
    assert f.shape == (g.number_of_edges(), num_heads, out_edge_feats)
    _, _, attn = egat(g, nfeat, efeat, True)
    assert attn.shape == (g.number_of_edges(), num_heads, 1)
572

573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
@parametrize_idtype
@pytest.mark.parametrize('g', get_cases(['bipartite'], exclude=['zero-degree']))
@pytest.mark.parametrize('out_node_feats', [1, 5])
@pytest.mark.parametrize('out_edge_feats', [1, 5])
@pytest.mark.parametrize('num_heads', [1, 4])
def test_egat_conv_bi(g, idtype, out_node_feats, out_edge_feats, num_heads):
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
    egat = nn.EGATConv(in_node_feats=(10,15),
                       in_edge_feats=7,
                       out_node_feats=out_node_feats,
                       out_edge_feats=out_edge_feats,
                       num_heads=num_heads)
    nfeat = (F.randn((g.number_of_src_nodes(), 10)), F.randn((g.number_of_dst_nodes(), 15)))
    efeat = F.randn((g.number_of_edges(), 7))
    egat = egat.to(ctx)
    h, f = egat(g, nfeat, efeat)
590

Mufei Li's avatar
Mufei Li committed
591
    th.save(egat, tmp_buffer)
592

593
594
595
596
597
    assert h.shape == (g.number_of_dst_nodes(), num_heads, out_node_feats)
    assert f.shape == (g.number_of_edges(), num_heads, out_edge_feats)
    _, _, attn = egat(g, nfeat, efeat, True)
    assert attn.shape == (g.number_of_edges(), num_heads, 1)

nv-dlasalle's avatar
nv-dlasalle committed
598
@parametrize_idtype
599
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite']))
600
@pytest.mark.parametrize('aggre_type', ['mean', 'pool', 'gcn', 'lstm'])
601
602
def test_sage_conv(idtype, g, aggre_type):
    g = g.astype(idtype).to(F.ctx())
603
    sage = nn.SAGEConv(5, 10, aggre_type)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
604
    feat = F.randn((g.number_of_src_nodes(), 5))
605
    sage = sage.to(F.ctx())
606
607
    # test pickle
    th.save(sage, tmp_buffer)
608
609
610
    h = sage(g, feat)
    assert h.shape[-1] == 10

nv-dlasalle's avatar
nv-dlasalle committed
611
@parametrize_idtype
612
@pytest.mark.parametrize('g', get_cases(['bipartite']))
613
@pytest.mark.parametrize('aggre_type', ['mean', 'pool', 'gcn', 'lstm'])
614
615
@pytest.mark.parametrize('out_dim', [1, 2])
def test_sage_conv_bi(idtype, g, aggre_type, out_dim):
616
    g = g.astype(idtype).to(F.ctx())
617
    dst_dim = 5 if aggre_type != 'gcn' else 10
618
    sage = nn.SAGEConv((10, dst_dim), out_dim, aggre_type)
619
620
    feat = (F.randn((g.number_of_src_nodes(), 10)), F.randn((g.number_of_dst_nodes(), dst_dim)))
    sage = sage.to(F.ctx())
621
    h = sage(g, feat)
622
    assert h.shape[-1] == out_dim
623
    assert h.shape[0] == g.number_of_dst_nodes()
624

nv-dlasalle's avatar
nv-dlasalle committed
625
@parametrize_idtype
626
627
@pytest.mark.parametrize('out_dim', [1, 2])
def test_sage_conv2(idtype, out_dim):
628
    # TODO: add test for blocks
Mufei Li's avatar
Mufei Li committed
629
    # Test the case for graphs without edges
630
    g = dgl.heterograph({('_U', '_E', '_V'): ([], [])}, {'_U': 5, '_V': 3})
631
632
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
633
    sage = nn.SAGEConv((3, 3), out_dim, 'gcn')
Mufei Li's avatar
Mufei Li committed
634
635
    feat = (F.randn((5, 3)), F.randn((3, 3)))
    sage = sage.to(ctx)
636
    h = sage(g, (F.copy_to(feat[0], F.ctx()), F.copy_to(feat[1], F.ctx())))
637
    assert h.shape[-1] == out_dim
Mufei Li's avatar
Mufei Li committed
638
639
    assert h.shape[0] == 3
    for aggre_type in ['mean', 'pool', 'lstm']:
640
        sage = nn.SAGEConv((3, 1), out_dim, aggre_type)
Mufei Li's avatar
Mufei Li committed
641
642
643
        feat = (F.randn((5, 3)), F.randn((3, 1)))
        sage = sage.to(ctx)
        h = sage(g, feat)
644
        assert h.shape[-1] == out_dim
Mufei Li's avatar
Mufei Li committed
645
646
        assert h.shape[0] == 3

nv-dlasalle's avatar
nv-dlasalle committed
647
@parametrize_idtype
648
@pytest.mark.parametrize('g', get_cases(['homo'], exclude=['zero-degree']))
649
650
@pytest.mark.parametrize('out_dim', [1, 2])
def test_sgc_conv(g, idtype, out_dim):
651
    ctx = F.ctx()
652
    g = g.astype(idtype).to(ctx)
653
    # not cached
654
    sgc = nn.SGConv(5, out_dim, 3)
655
656
657
658

    # test pickle
    th.save(sgc, tmp_buffer)

659
    feat = F.randn((g.number_of_nodes(), 5))
660
    sgc = sgc.to(ctx)
661

662
    h = sgc(g, feat)
663
    assert h.shape[-1] == out_dim
664
665

    # cached
666
    sgc = nn.SGConv(5, out_dim, 3, True)
667
    sgc = sgc.to(ctx)
668
669
    h_0 = sgc(g, feat)
    h_1 = sgc(g, feat + 1)
670
    assert F.allclose(h_0, h_1)
671
    assert h_0.shape[-1] == out_dim
672

nv-dlasalle's avatar
nv-dlasalle committed
673
@parametrize_idtype
674
675
@pytest.mark.parametrize('g', get_cases(['homo'], exclude=['zero-degree']))
def test_appnp_conv(g, idtype):
676
    ctx = F.ctx()
677
    g = g.astype(idtype).to(ctx)
678
    appnp = nn.APPNPConv(10, 0.1)
679
    feat = F.randn((g.number_of_nodes(), 5))
680
    appnp = appnp.to(ctx)
Mufei Li's avatar
Mufei Li committed
681

682
683
    # test pickle
    th.save(appnp, tmp_buffer)
684

685
    h = appnp(g, feat)
686
687
    assert h.shape[-1] == 5

688

nv-dlasalle's avatar
nv-dlasalle committed
689
@parametrize_idtype
690
691
692
693
694
695
696
697
698
699
700
701
@pytest.mark.parametrize('g', get_cases(['homo'], exclude=['zero-degree']))
def test_appnp_conv_e_weight(g, idtype):
    ctx = F.ctx()
    g = g.astype(idtype).to(ctx)
    appnp = nn.APPNPConv(10, 0.1)
    feat = F.randn((g.number_of_nodes(), 5))
    eweight = F.ones((g.num_edges(), ))
    appnp = appnp.to(ctx)

    h = appnp(g, feat, edge_weight=eweight)
    assert h.shape[-1] == 5

nv-dlasalle's avatar
nv-dlasalle committed
702
@parametrize_idtype
703
@pytest.mark.parametrize('g', get_cases(['homo'], exclude=['zero-degree']))
704
705
@pytest.mark.parametrize("bias", [True, False])
def test_gcn2conv_e_weight(g, idtype, bias):
706
707
    ctx = F.ctx()
    g = g.astype(idtype).to(ctx)
708
    gcn2conv = nn.GCN2Conv(5, layer=2, alpha=0.5, bias=bias,
709
710
711
712
713
714
715
716
717
                           project_initial_features=True)
    feat = F.randn((g.number_of_nodes(), 5))
    eweight = F.ones((g.num_edges(), ))
    gcn2conv = gcn2conv.to(ctx)
    res = feat
    h = gcn2conv(g, res, feat, edge_weight=eweight)
    assert h.shape[-1] == 5


nv-dlasalle's avatar
nv-dlasalle committed
718
@parametrize_idtype
719
720
721
722
723
724
725
726
727
728
729
@pytest.mark.parametrize('g', get_cases(['homo'], exclude=['zero-degree']))
def test_sgconv_e_weight(g, idtype):
    ctx = F.ctx()
    g = g.astype(idtype).to(ctx)
    sgconv = nn.SGConv(5, 5, 3)
    feat = F.randn((g.number_of_nodes(), 5))
    eweight = F.ones((g.num_edges(), ))
    sgconv = sgconv.to(ctx)
    h = sgconv(g, feat, edge_weight=eweight)
    assert h.shape[-1] == 5

nv-dlasalle's avatar
nv-dlasalle committed
730
@parametrize_idtype
731
732
733
734
735
736
737
738
739
740
741
742
@pytest.mark.parametrize('g', get_cases(['homo'], exclude=['zero-degree']))
def test_tagconv_e_weight(g, idtype):
    ctx = F.ctx()
    g = g.astype(idtype).to(ctx)
    conv = nn.TAGConv(5, 5, bias=True)
    conv = conv.to(ctx)
    feat = F.randn((g.number_of_nodes(), 5))
    eweight = F.ones((g.num_edges(), ))
    conv = conv.to(ctx)
    h = conv(g, feat, edge_weight=eweight)
    assert h.shape[-1] == 5

nv-dlasalle's avatar
nv-dlasalle committed
743
@parametrize_idtype
744
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite'], exclude=['zero-degree']))
745
@pytest.mark.parametrize('aggregator_type', ['mean', 'max', 'sum'])
746
747
def test_gin_conv(g, idtype, aggregator_type):
    g = g.astype(idtype).to(F.ctx())
748
749
750
751
752
    ctx = F.ctx()
    gin = nn.GINConv(
        th.nn.Linear(5, 12),
        aggregator_type
    )
VoVAllen's avatar
VoVAllen committed
753
    th.save(gin, tmp_buffer)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
754
    feat = F.randn((g.number_of_src_nodes(), 5))
755
756
    gin = gin.to(ctx)
    h = gin(g, feat)
757
758

    # test pickle
VoVAllen's avatar
VoVAllen committed
759
    th.save(gin, tmp_buffer)
Mufei Li's avatar
Mufei Li committed
760

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
761
    assert h.shape == (g.number_of_dst_nodes(), 12)
762

Mufei Li's avatar
Mufei Li committed
763
764
765
766
    gin = nn.GINConv(None, aggregator_type)
    th.save(gin, tmp_buffer)
    gin = gin.to(ctx)
    h = gin(g, feat)
767

nv-dlasalle's avatar
nv-dlasalle committed
768
@parametrize_idtype
Mufei Li's avatar
Mufei Li committed
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite']))
def test_gine_conv(g, idtype):
    ctx = F.ctx()
    g = g.astype(idtype).to(ctx)
    gine = nn.GINEConv(
        th.nn.Linear(5, 12)
    )
    th.save(gine, tmp_buffer)
    nfeat = F.randn((g.number_of_src_nodes(), 5))
    efeat = F.randn((g.num_edges(), 5))
    gine = gine.to(ctx)
    h = gine(g, nfeat, efeat)

    # test pickle
    th.save(gine, tmp_buffer)
    assert h.shape == (g.number_of_dst_nodes(), 12)

    gine = nn.GINEConv(None)
    th.save(gine, tmp_buffer)
    gine = gine.to(ctx)
    h = gine(g, nfeat, efeat)

nv-dlasalle's avatar
nv-dlasalle committed
791
@parametrize_idtype
792
@pytest.mark.parametrize('g', get_cases(['bipartite'], exclude=['zero-degree']))
793
794
795
796
@pytest.mark.parametrize('aggregator_type', ['mean', 'max', 'sum'])
def test_gin_conv_bi(g, idtype, aggregator_type):
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
797
798
799
800
    gin = nn.GINConv(
        th.nn.Linear(5, 12),
        aggregator_type
    )
801
    feat = (F.randn((g.number_of_src_nodes(), 5)), F.randn((g.number_of_dst_nodes(), 5)))
802
803
    gin = gin.to(ctx)
    h = gin(g, feat)
804
    assert h.shape == (g.number_of_dst_nodes(), 12)
805

nv-dlasalle's avatar
nv-dlasalle committed
806
@parametrize_idtype
807
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite'], exclude=['zero-degree']))
808
809
def test_agnn_conv(g, idtype):
    g = g.astype(idtype).to(F.ctx())
810
811
    ctx = F.ctx()
    agnn = nn.AGNNConv(1)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
812
    feat = F.randn((g.number_of_src_nodes(), 5))
813
    agnn = agnn.to(ctx)
814
    h = agnn(g, feat)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
815
    assert h.shape == (g.number_of_dst_nodes(), 5)
816

nv-dlasalle's avatar
nv-dlasalle committed
817
@parametrize_idtype
818
@pytest.mark.parametrize('g', get_cases(['bipartite'], exclude=['zero-degree']))
819
820
821
def test_agnn_conv_bi(g, idtype):
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
822
    agnn = nn.AGNNConv(1)
823
    feat = (F.randn((g.number_of_src_nodes(), 5)), F.randn((g.number_of_dst_nodes(), 5)))
824
825
    agnn = agnn.to(ctx)
    h = agnn(g, feat)
826
    assert h.shape == (g.number_of_dst_nodes(), 5)
827

nv-dlasalle's avatar
nv-dlasalle committed
828
@parametrize_idtype
829
830
@pytest.mark.parametrize('g', get_cases(['homo'], exclude=['zero-degree']))
def test_gated_graph_conv(g, idtype):
831
    ctx = F.ctx()
832
    g = g.astype(idtype).to(ctx)
833
834
    ggconv = nn.GatedGraphConv(5, 10, 5, 3)
    etypes = th.arange(g.number_of_edges()) % 3
835
    feat = F.randn((g.number_of_nodes(), 5))
836
837
    ggconv = ggconv.to(ctx)
    etypes = etypes.to(ctx)
838

839
    h = ggconv(g, feat, etypes)
840
841
842
    # current we only do shape check
    assert h.shape[-1] == 10

nv-dlasalle's avatar
nv-dlasalle committed
843
@parametrize_idtype
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
@pytest.mark.parametrize('g', get_cases(['homo'], exclude=['zero-degree']))
def test_gated_graph_conv_one_etype(g, idtype):
    ctx = F.ctx()
    g = g.astype(idtype).to(ctx)
    ggconv = nn.GatedGraphConv(5, 10, 5, 1)
    etypes = th.zeros(g.number_of_edges())
    feat = F.randn((g.number_of_nodes(), 5))
    ggconv = ggconv.to(ctx)
    etypes = etypes.to(ctx)

    h = ggconv(g, feat, etypes)
    h2 = ggconv(g, feat)
    # current we only do shape check
    assert F.allclose(h, h2)
    assert h.shape[-1] == 10

nv-dlasalle's avatar
nv-dlasalle committed
860
@parametrize_idtype
861
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite'], exclude=['zero-degree']))
862
863
def test_nn_conv(g, idtype):
    g = g.astype(idtype).to(F.ctx())
864
865
866
    ctx = F.ctx()
    edge_func = th.nn.Linear(4, 5 * 10)
    nnconv = nn.NNConv(5, 10, edge_func, 'mean')
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
867
    feat = F.randn((g.number_of_src_nodes(), 5))
868
869
870
871
872
873
    efeat = F.randn((g.number_of_edges(), 4))
    nnconv = nnconv.to(ctx)
    h = nnconv(g, feat, efeat)
    # currently we only do shape check
    assert h.shape[-1] == 10

nv-dlasalle's avatar
nv-dlasalle committed
874
@parametrize_idtype
875
@pytest.mark.parametrize('g', get_cases(['bipartite'], exclude=['zero-degree']))
876
877
878
def test_nn_conv_bi(g, idtype):
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
879
880
    edge_func = th.nn.Linear(4, 5 * 10)
    nnconv = nn.NNConv((5, 2), 10, edge_func, 'mean')
881
882
    feat = F.randn((g.number_of_src_nodes(), 5))
    feat_dst = F.randn((g.number_of_dst_nodes(), 2))
883
884
885
886
887
888
    efeat = F.randn((g.number_of_edges(), 4))
    nnconv = nnconv.to(ctx)
    h = nnconv(g, (feat, feat_dst), efeat)
    # currently we only do shape check
    assert h.shape[-1] == 10

nv-dlasalle's avatar
nv-dlasalle committed
889
@parametrize_idtype
890
@pytest.mark.parametrize('g', get_cases(['homo'], exclude=['zero-degree']))
891
892
def test_gmm_conv(g, idtype):
    g = g.astype(idtype).to(F.ctx())
893
894
    ctx = F.ctx()
    gmmconv = nn.GMMConv(5, 10, 3, 4, 'mean')
895
    feat = F.randn((g.number_of_nodes(), 5))
896
    pseudo = F.randn((g.number_of_edges(), 3))
897
    gmmconv = gmmconv.to(ctx)
898
    h = gmmconv(g, feat, pseudo)
899
900
901
    # currently we only do shape check
    assert h.shape[-1] == 10

nv-dlasalle's avatar
nv-dlasalle committed
902
@parametrize_idtype
903
@pytest.mark.parametrize('g', get_cases(['bipartite', 'block-bipartite'], exclude=['zero-degree']))
904
905
906
def test_gmm_conv_bi(g, idtype):
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
907
    gmmconv = nn.GMMConv((5, 2), 10, 3, 4, 'mean')
908
909
    feat = F.randn((g.number_of_src_nodes(), 5))
    feat_dst = F.randn((g.number_of_dst_nodes(), 2))
910
911
912
913
914
915
    pseudo = F.randn((g.number_of_edges(), 3))
    gmmconv = gmmconv.to(ctx)
    h = gmmconv(g, (feat, feat_dst), pseudo)
    # currently we only do shape check
    assert h.shape[-1] == 10

nv-dlasalle's avatar
nv-dlasalle committed
916
@parametrize_idtype
917
@pytest.mark.parametrize('norm_type', ['both', 'right', 'none'])
918
@pytest.mark.parametrize('g', get_cases(['homo', 'bipartite'], exclude=['zero-degree']))
919
920
@pytest.mark.parametrize('out_dim', [1, 2])
def test_dense_graph_conv(norm_type, g, idtype, out_dim):
921
    g = g.astype(idtype).to(F.ctx())
922
    ctx = F.ctx()
923
    # TODO(minjie): enable the following option after #1385
924
    adj = g.adjacency_matrix(transpose=True, ctx=ctx).to_dense()
925
926
    conv = nn.GraphConv(5, out_dim, norm=norm_type, bias=True)
    dense_conv = nn.DenseGraphConv(5, out_dim, norm=norm_type, bias=True)
927
928
    dense_conv.weight.data = conv.weight.data
    dense_conv.bias.data = conv.bias.data
929
    feat = F.randn((g.number_of_src_nodes(), 5))
930
931
    conv = conv.to(ctx)
    dense_conv = dense_conv.to(ctx)
932
933
    out_conv = conv(g, feat)
    out_dense_conv = dense_conv(adj, feat)
934
935
    assert F.allclose(out_conv, out_dense_conv)

nv-dlasalle's avatar
nv-dlasalle committed
936
@parametrize_idtype
937
@pytest.mark.parametrize('g', get_cases(['homo', 'bipartite']))
938
939
@pytest.mark.parametrize('out_dim', [1, 2])
def test_dense_sage_conv(g, idtype, out_dim):
940
    g = g.astype(idtype).to(F.ctx())
941
    ctx = F.ctx()
942
    adj = g.adjacency_matrix(transpose=True, ctx=ctx).to_dense()
943
944
    sage = nn.SAGEConv(5, out_dim, 'gcn')
    dense_sage = nn.DenseSAGEConv(5, out_dim)
945
    dense_sage.fc.weight.data = sage.fc_neigh.weight.data
946
    dense_sage.fc.bias.data = sage.bias.data
947
948
949
950
951
952
953
    if len(g.ntypes) == 2:
        feat = (
            F.randn((g.number_of_src_nodes(), 5)),
            F.randn((g.number_of_dst_nodes(), 5))
        )
    else:
        feat = F.randn((g.number_of_nodes(), 5))
954
955
    sage = sage.to(ctx)
    dense_sage = dense_sage.to(ctx)
956
957
    out_sage = sage(g, feat)
    out_dense_sage = dense_sage(adj, feat)
958
959
    assert F.allclose(out_sage, out_dense_sage), g

nv-dlasalle's avatar
nv-dlasalle committed
960
@parametrize_idtype
961
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite'], exclude=['zero-degree']))
962
963
@pytest.mark.parametrize('out_dim', [1, 2])
def test_edge_conv(g, idtype, out_dim):
964
    g = g.astype(idtype).to(F.ctx())
965
    ctx = F.ctx()
966
    edge_conv = nn.EdgeConv(5, out_dim).to(ctx)
967
    print(edge_conv)
968
969
970

    # test pickle
    th.save(edge_conv, tmp_buffer)
Mufei Li's avatar
Mufei Li committed
971

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
972
    h0 = F.randn((g.number_of_src_nodes(), 5))
973
    h1 = edge_conv(g, h0)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
974
    assert h1.shape == (g.number_of_dst_nodes(), out_dim)
975

nv-dlasalle's avatar
nv-dlasalle committed
976
@parametrize_idtype
977
@pytest.mark.parametrize('g', get_cases(['bipartite'], exclude=['zero-degree']))
978
979
@pytest.mark.parametrize('out_dim', [1, 2])
def test_edge_conv_bi(g, idtype, out_dim):
980
981
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
982
    edge_conv = nn.EdgeConv(5, out_dim).to(ctx)
983
    print(edge_conv)
984
    h0 = F.randn((g.number_of_src_nodes(), 5))
985
986
    x0 = F.randn((g.number_of_dst_nodes(), 5))
    h1 = edge_conv(g, (h0, x0))
987
    assert h1.shape == (g.number_of_dst_nodes(), out_dim)
Mufei Li's avatar
Mufei Li committed
988

nv-dlasalle's avatar
nv-dlasalle committed
989
@parametrize_idtype
990
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite'], exclude=['zero-degree']))
991
992
993
@pytest.mark.parametrize('out_dim', [1, 2])
@pytest.mark.parametrize('num_heads', [1, 4])
def test_dotgat_conv(g, idtype, out_dim, num_heads):
994
995
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
996
    dotgat = nn.DotGatConv(5, out_dim, num_heads)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
997
    feat = F.randn((g.number_of_src_nodes(), 5))
998
    dotgat = dotgat.to(ctx)
Mufei Li's avatar
Mufei Li committed
999

1000
1001
    # test pickle
    th.save(dotgat, tmp_buffer)
Mufei Li's avatar
Mufei Li committed
1002

1003
    h = dotgat(g, feat)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1004
    assert h.shape == (g.number_of_dst_nodes(), num_heads, out_dim)
1005
    _, a = dotgat(g, feat, get_attention=True)
1006
    assert a.shape == (g.number_of_edges(), num_heads, 1)
1007

nv-dlasalle's avatar
nv-dlasalle committed
1008
@parametrize_idtype
1009
@pytest.mark.parametrize('g', get_cases(['bipartite'], exclude=['zero-degree']))
1010
1011
1012
@pytest.mark.parametrize('out_dim', [1, 2])
@pytest.mark.parametrize('num_heads', [1, 4])
def test_dotgat_conv_bi(g, idtype, out_dim, num_heads):
1013
1014
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
1015
    dotgat = nn.DotGatConv((5, 5), out_dim, num_heads)
1016
1017
1018
    feat = (F.randn((g.number_of_src_nodes(), 5)), F.randn((g.number_of_dst_nodes(), 5)))
    dotgat = dotgat.to(ctx)
    h = dotgat(g, feat)
1019
    assert h.shape == (g.number_of_dst_nodes(), num_heads, out_dim)
1020
    _, a = dotgat(g, feat, get_attention=True)
1021
    assert a.shape == (g.number_of_edges(), num_heads, 1)
1022

1023
1024
@pytest.mark.parametrize('out_dim', [1, 2])
def test_dense_cheb_conv(out_dim):
1025
1026
1027
    for k in range(1, 4):
        ctx = F.ctx()
        g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
1028
        g = g.to(F.ctx())
1029
        adj = g.adjacency_matrix(transpose=True, ctx=ctx).to_dense()
1030
1031
        cheb = nn.ChebConv(5, out_dim, k, None)
        dense_cheb = nn.DenseChebConv(5, out_dim, k)
Axel Nilsson's avatar
Axel Nilsson committed
1032
1033
        #for i in range(len(cheb.fc)):
        #    dense_cheb.W.data[i] = cheb.fc[i].weight.data.t()
1034
        dense_cheb.W.data = cheb.linear.weight.data.transpose(-1, -2).view(k, 5, out_dim)
Axel Nilsson's avatar
Axel Nilsson committed
1035
1036
        if cheb.linear.bias is not None:
            dense_cheb.bias.data = cheb.linear.bias.data
1037
        feat = F.randn((100, 5))
1038
1039
        cheb = cheb.to(ctx)
        dense_cheb = dense_cheb.to(ctx)
1040
1041
        out_cheb = cheb(g, feat, [2.0])
        out_dense_cheb = dense_cheb(adj, feat, 2.0)
Axel Nilsson's avatar
Axel Nilsson committed
1042
        print(k, out_cheb, out_dense_cheb)
1043
1044
        assert F.allclose(out_cheb, out_dense_cheb)

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
def test_sequential():
    ctx = F.ctx()
    # Test single graph
    class ExampleLayer(th.nn.Module):
        def __init__(self):
            super().__init__()

        def forward(self, graph, n_feat, e_feat):
            graph = graph.local_var()
            graph.ndata['h'] = n_feat
            graph.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
            n_feat += graph.ndata['h']
            graph.apply_edges(fn.u_add_v('h', 'h', 'e'))
            e_feat += graph.edata['e']
            return n_feat, e_feat

    g = dgl.DGLGraph()
    g.add_nodes(3)
    g.add_edges([0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1, 2, 2, 2])
1064
    g = g.to(F.ctx())
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
    net = nn.Sequential(ExampleLayer(), ExampleLayer(), ExampleLayer())
    n_feat = F.randn((3, 4))
    e_feat = F.randn((9, 4))
    net = net.to(ctx)
    n_feat, e_feat = net(g, n_feat, e_feat)
    assert n_feat.shape == (3, 4)
    assert e_feat.shape == (9, 4)

    # Test multiple graph
    class ExampleLayer(th.nn.Module):
        def __init__(self):
            super().__init__()

        def forward(self, graph, n_feat):
            graph = graph.local_var()
            graph.ndata['h'] = n_feat
            graph.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
            n_feat += graph.ndata['h']
            return n_feat.view(graph.number_of_nodes() // 2, 2, -1).sum(1)

1085
1086
1087
    g1 = dgl.DGLGraph(nx.erdos_renyi_graph(32, 0.05)).to(F.ctx())
    g2 = dgl.DGLGraph(nx.erdos_renyi_graph(16, 0.2)).to(F.ctx())
    g3 = dgl.DGLGraph(nx.erdos_renyi_graph(8, 0.8)).to(F.ctx())
1088
1089
1090
1091
1092
1093
    net = nn.Sequential(ExampleLayer(), ExampleLayer(), ExampleLayer())
    net = net.to(ctx)
    n_feat = F.randn((32, 4))
    n_feat = net([g1, g2, g3], n_feat)
    assert n_feat.shape == (4, 4)

nv-dlasalle's avatar
nv-dlasalle committed
1094
@parametrize_idtype
1095
1096
1097
@pytest.mark.parametrize('g', get_cases(['homo'], exclude=['zero-degree']))
def test_atomic_conv(g, idtype):
    g = g.astype(idtype).to(F.ctx())
1098
1099
1100
1101
1102
1103
1104
1105
1106
    aconv = nn.AtomicConv(interaction_cutoffs=F.tensor([12.0, 12.0]),
                          rbf_kernel_means=F.tensor([0.0, 2.0]),
                          rbf_kernel_scaling=F.tensor([4.0, 4.0]),
                          features_to_use=F.tensor([6.0, 8.0]))

    ctx = F.ctx()
    if F.gpu_ctx():
        aconv = aconv.to(ctx)

1107
    feat = F.randn((g.number_of_nodes(), 1))
1108
1109
1110
    dist = F.randn((g.number_of_edges(), 1))

    h = aconv(g, feat, dist)
1111

1112
1113
1114
    # current we only do shape check
    assert h.shape[-1] == 4

nv-dlasalle's avatar
nv-dlasalle committed
1115
@parametrize_idtype
1116
@pytest.mark.parametrize('g', get_cases(['homo', 'bipartite'], exclude=['zero-degree']))
1117
1118
@pytest.mark.parametrize('out_dim', [1, 3])
def test_cf_conv(g, idtype, out_dim):
1119
    g = g.astype(idtype).to(F.ctx())
1120
1121
1122
    cfconv = nn.CFConv(node_in_feats=2,
                       edge_in_feats=3,
                       hidden_feats=2,
1123
                       out_feats=out_dim)
1124
1125
1126
1127
1128

    ctx = F.ctx()
    if F.gpu_ctx():
        cfconv = cfconv.to(ctx)

1129
    src_feats = F.randn((g.number_of_src_nodes(), 2))
1130
    edge_feats = F.randn((g.number_of_edges(), 3))
1131
1132
1133
1134
1135
1136
1137
    h = cfconv(g, src_feats, edge_feats)
    # current we only do shape check
    assert h.shape[-1] == out_dim

    # case for bipartite graphs
    dst_feats = F.randn((g.number_of_dst_nodes(), 3))
    h = cfconv(g, (src_feats, dst_feats), edge_feats)
1138
    # current we only do shape check
1139
    assert h.shape[-1] == out_dim
1140

1141
1142
1143
1144
1145
1146
def myagg(alist, dsttype):
    rst = alist[0]
    for i in range(1, len(alist)):
        rst = rst + (i + 1) * alist[i]
    return rst

nv-dlasalle's avatar
nv-dlasalle committed
1147
@parametrize_idtype
1148
@pytest.mark.parametrize('agg', ['sum', 'max', 'min', 'mean', 'stack', myagg])
1149
def test_hetero_conv(agg, idtype):
1150
    g = dgl.heterograph({
1151
1152
1153
        ('user', 'follows', 'user'): ([0, 0, 2, 1], [1, 2, 1, 3]),
        ('user', 'plays', 'game'): ([0, 0, 0, 1, 2], [0, 2, 3, 0, 2]),
        ('store', 'sells', 'game'): ([0, 0, 1, 1], [0, 3, 1, 2])},
1154
        idtype=idtype, device=F.ctx())
1155
    conv = nn.HeteroGraphConv({
1156
1157
1158
        'follows': nn.GraphConv(2, 3, allow_zero_in_degree=True),
        'plays': nn.GraphConv(2, 4, allow_zero_in_degree=True),
        'sells': nn.GraphConv(3, 4, allow_zero_in_degree=True)},
1159
        agg)
1160
    conv = conv.to(F.ctx())
1161
1162
1163
1164

    # test pickle
    th.save(conv, tmp_buffer)

1165
1166
1167
1168
    uf = F.randn((4, 2))
    gf = F.randn((4, 4))
    sf = F.randn((2, 3))

1169
    h = conv(g, {'user': uf, 'game': gf, 'store': sf})
1170
1171
1172
1173
1174
1175
    assert set(h.keys()) == {'user', 'game'}
    if agg != 'stack':
        assert h['user'].shape == (4, 3)
        assert h['game'].shape == (4, 4)
    else:
        assert h['user'].shape == (4, 1, 3)
1176
        assert h['game'].shape == (4, 2, 4)
1177

1178
1179
    block = dgl.to_block(g.to(F.cpu()), {'user': [0, 1, 2, 3], 'game': [0, 1, 2, 3], 'store': []}).to(F.ctx())
    h = conv(block, ({'user': uf, 'game': gf, 'store': sf}, {'user': uf, 'game': gf, 'store': sf[0:0]}))
1180
1181
1182
1183
1184
1185
1186
1187
    assert set(h.keys()) == {'user', 'game'}
    if agg != 'stack':
        assert h['user'].shape == (4, 3)
        assert h['game'].shape == (4, 4)
    else:
        assert h['user'].shape == (4, 1, 3)
        assert h['game'].shape == (4, 2, 4)

1188
    h = conv(block, {'user': uf, 'game': gf, 'store': sf})
1189
1190
1191
1192
1193
1194
    assert set(h.keys()) == {'user', 'game'}
    if agg != 'stack':
        assert h['user'].shape == (4, 3)
        assert h['game'].shape == (4, 4)
    else:
        assert h['user'].shape == (4, 1, 3)
1195
        assert h['game'].shape == (4, 2, 4)
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218

    # test with mod args
    class MyMod(th.nn.Module):
        def __init__(self, s1, s2):
            super(MyMod, self).__init__()
            self.carg1 = 0
            self.carg2 = 0
            self.s1 = s1
            self.s2 = s2
        def forward(self, g, h, arg1=None, *, arg2=None):
            if arg1 is not None:
                self.carg1 += 1
            if arg2 is not None:
                self.carg2 += 1
            return th.zeros((g.number_of_dst_nodes(), self.s2))
    mod1 = MyMod(2, 3)
    mod2 = MyMod(2, 4)
    mod3 = MyMod(3, 4)
    conv = nn.HeteroGraphConv({
        'follows': mod1,
        'plays': mod2,
        'sells': mod3},
        agg)
1219
    conv = conv.to(F.ctx())
1220
1221
    mod_args = {'follows' : (1,), 'plays' : (1,)}
    mod_kwargs = {'sells' : {'arg2' : 'abc'}}
1222
    h = conv(g, {'user' : uf, 'game': gf, 'store' : sf}, mod_args=mod_args, mod_kwargs=mod_kwargs)
1223
1224
1225
1226
1227
1228
1229
    assert mod1.carg1 == 1
    assert mod1.carg2 == 0
    assert mod2.carg1 == 1
    assert mod2.carg2 == 0
    assert mod3.carg1 == 0
    assert mod3.carg2 == 1

1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
    #conv on graph without any edges
    for etype in g.etypes:
        g = dgl.remove_edges(g, g.edges(form='eid', etype=etype), etype=etype)
    assert g.num_edges() == 0
    h = conv(g, {'user': uf, 'game': gf, 'store': sf})
    assert set(h.keys()) == {'user', 'game'}

    block = dgl.to_block(g.to(F.cpu()), {'user': [0, 1, 2, 3], 'game': [
                         0, 1, 2, 3], 'store': []}).to(F.ctx())
    h = conv(block, ({'user': uf, 'game': gf, 'store': sf},
             {'user': uf, 'game': gf, 'store': sf[0:0]}))
    assert set(h.keys()) == {'user', 'game'}

1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
@pytest.mark.parametrize('out_dim', [1, 2, 100])
def test_hetero_linear(out_dim):
    in_feats = {
        'user': F.randn((2, 1)),
        ('user', 'follows', 'user'): F.randn((3, 2))
    }

    layer = nn.HeteroLinear({'user': 1, ('user', 'follows', 'user'): 2}, out_dim)
    layer = layer.to(F.ctx())
    out_feats = layer(in_feats)
    assert out_feats['user'].shape == (2, out_dim)
    assert out_feats[('user', 'follows', 'user')].shape == (3, out_dim)

@pytest.mark.parametrize('out_dim', [1, 2, 100])
def test_hetero_embedding(out_dim):
    layer = nn.HeteroEmbedding({'user': 2, ('user', 'follows', 'user'): 3}, out_dim)
    layer = layer.to(F.ctx())

    embeds = layer.weight
    assert embeds['user'].shape == (2, out_dim)
    assert embeds[('user', 'follows', 'user')].shape == (3, out_dim)

YJ-Zhao's avatar
YJ-Zhao committed
1265
1266
1267
1268
1269
    layer.reset_parameters()
    embeds = layer.weight
    assert embeds['user'].shape == (2, out_dim)
    assert embeds[('user', 'follows', 'user')].shape == (3, out_dim)

1270
1271
1272
1273
1274
1275
1276
    embeds = layer({
        'user': F.tensor([0], dtype=F.int64),
        ('user', 'follows', 'user'): F.tensor([0, 2], dtype=F.int64)
    })
    assert embeds['user'].shape == (1, out_dim)
    assert embeds[('user', 'follows', 'user')].shape == (2, out_dim)

nv-dlasalle's avatar
nv-dlasalle committed
1277
@parametrize_idtype
Mufei Li's avatar
Mufei Li committed
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
@pytest.mark.parametrize('g', get_cases(['homo'], exclude=['zero-degree']))
@pytest.mark.parametrize('out_dim', [1, 2])
def test_gnnexplainer(g, idtype, out_dim):
    g = g.astype(idtype).to(F.ctx())
    feat = F.randn((g.num_nodes(), 5))

    class Model(th.nn.Module):
        def __init__(self, in_feats, out_feats, graph=False):
            super(Model, self).__init__()
            self.linear = th.nn.Linear(in_feats, out_feats)
            if graph:
                self.pool = nn.AvgPooling()
            else:
                self.pool = None

        def forward(self, graph, feat, eweight=None):
            with graph.local_scope():
                feat = self.linear(feat)
                graph.ndata['h'] = feat
                if eweight is None:
                    graph.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
                else:
                    graph.edata['w'] = eweight
                    graph.update_all(fn.u_mul_e('h', 'w', 'm'), fn.sum('m', 'h'))

                if self.pool:
                    return self.pool(graph, graph.ndata['h'])
                else:
                    return graph.ndata['h']

    # Explain node prediction
    model = Model(5, out_dim)
    model = model.to(F.ctx())
    explainer = nn.GNNExplainer(model, num_hops=1)
    new_center, sg, feat_mask, edge_mask = explainer.explain_node(0, g, feat)

    # Explain graph prediction
    model = Model(5, out_dim, graph=True)
    model = model.to(F.ctx())
    explainer = nn.GNNExplainer(model, num_hops=1)
    feat_mask, edge_mask = explainer.explain_graph(g, feat)

Mufei Li's avatar
Mufei Li committed
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
def test_jumping_knowledge():
    ctx = F.ctx()
    num_layers = 2
    num_nodes = 3
    num_feats = 4

    feat_list = [th.randn((num_nodes, num_feats)).to(ctx) for _ in range(num_layers)]

    model = nn.JumpingKnowledge('cat').to(ctx)
    model.reset_parameters()
    assert model(feat_list).shape == (num_nodes, num_layers * num_feats)

    model = nn.JumpingKnowledge('max').to(ctx)
    model.reset_parameters()
    assert model(feat_list).shape == (num_nodes, num_feats)

    model = nn.JumpingKnowledge('lstm', num_feats, num_layers).to(ctx)
    model.reset_parameters()
    assert model(feat_list).shape == (num_nodes, num_feats)

Mufei Li's avatar
Mufei Li committed
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
@pytest.mark.parametrize('op', ['dot', 'cos', 'ele', 'cat'])
def test_edge_predictor(op):
    ctx = F.ctx()
    num_pairs = 3
    in_feats = 4
    out_feats = 5
    h_src = th.randn((num_pairs, in_feats)).to(ctx)
    h_dst = th.randn((num_pairs, in_feats)).to(ctx)

    pred = nn.EdgePredictor(op)
    if op in ['dot', 'cos']:
        assert pred(h_src, h_dst).shape == (num_pairs, 1)
    elif op == 'ele':
        assert pred(h_src, h_dst).shape == (num_pairs, in_feats)
    else:
        assert pred(h_src, h_dst).shape == (num_pairs, 2 * in_feats)
    pred = nn.EdgePredictor(op, in_feats, out_feats, bias=True).to(ctx)
    assert pred(h_src, h_dst).shape == (num_pairs, out_feats)

Mufei Li's avatar
Mufei Li committed
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378

def test_ke_score_funcs():
    ctx = F.ctx()
    num_edges = 30
    num_rels = 3
    nfeats = 4

    h_src = th.randn((num_edges, nfeats)).to(ctx)
    h_dst = th.randn((num_edges, nfeats)).to(ctx)
    rels = th.randint(low=0, high=num_rels, size=(num_edges,)).to(ctx)

    score_func = nn.TransE(num_rels=num_rels, feats=nfeats).to(ctx)
    score_func.reset_parameters()
    score_func(h_src, h_dst, rels).shape == (num_edges)

    score_func = nn.TransR(num_rels=num_rels, rfeats=nfeats - 1, nfeats=nfeats).to(ctx)
    score_func.reset_parameters()
    score_func(h_src, h_dst, rels).shape == (num_edges)


1379
def test_twirls():
1380
1381
1382
1383
1384
    g = dgl.graph(([0,1,2,3,2,5], [1,2,3,4,0,3]))
    feat = th.ones(6, 10)
    conv = nn.TWIRLSConv(10, 2, 128, prop_step = 64)
    res = conv(g , feat)
    assert ( res.size() == (6,2) )
1385

1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
@pytest.mark.parametrize('feat_size', [4, 32])
@pytest.mark.parametrize('regularizer,num_bases', [(None, None), ('basis', 4), ('bdd', 4)])
def test_typed_linear(feat_size, regularizer, num_bases):
    dev = F.ctx()
    num_types = 5
    lin = nn.TypedLinear(feat_size, feat_size * 2, 5, regularizer=regularizer, num_bases=num_bases).to(dev)
    print(lin)
    x = th.randn(100, feat_size).to(dev)
    x_type = th.randint(0, 5, (100,)).to(dev)
    x_type_sorted, idx = th.sort(x_type)
    _, rev_idx = th.sort(idx)
    x_sorted = x[idx]

    # test unsorted
    y = lin(x, x_type)
    assert y.shape == (100, feat_size * 2)
    # test sorted
    y_sorted = lin(x_sorted, x_type_sorted, sorted_by_type=True)
    assert y_sorted.shape == (100, feat_size * 2)

    assert th.allclose(y, y_sorted[rev_idx], atol=1e-4, rtol=1e-4)
1407

nv-dlasalle's avatar
nv-dlasalle committed
1408
@parametrize_idtype
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
@pytest.mark.parametrize('in_size', [4])
@pytest.mark.parametrize('num_heads', [1])
def test_hgt(idtype, in_size, num_heads):
    dev = F.ctx()
    num_etypes = 5
    num_ntypes = 2
    head_size = in_size // num_heads

    g = dgl.from_scipy(sp.sparse.random(100, 100, density=0.01))
    g = g.astype(idtype).to(dev)
    etype = th.tensor([i % num_etypes for i in range(g.num_edges())]).to(dev)
    ntype = th.tensor([i % num_ntypes for i in range(g.num_nodes())]).to(dev)
    x = th.randn(g.num_nodes(), in_size).to(dev)
1422

1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
    m = nn.HGTConv(in_size, head_size, num_heads, num_ntypes, num_etypes).to(dev)

    y = m(g, x, ntype, etype)
    assert y.shape == (g.num_nodes(), head_size * num_heads)
    # presorted
    sorted_ntype, idx_nt = th.sort(ntype)
    sorted_etype, idx_et = th.sort(etype)
    _, rev_idx = th.sort(idx_nt)
    g.ndata['t'] = ntype
    g.ndata['x'] = x
    g.edata['t'] = etype
    sorted_g = dgl.reorder_graph(g, node_permute_algo='custom', edge_permute_algo='custom',
                                 permute_config={'nodes_perm' : idx_nt.to(idtype), 'edges_perm' : idx_et.to(idtype)})
    print(sorted_g.ndata['t'])
    print(sorted_g.edata['t'])
    sorted_x = sorted_g.ndata['x']
    sorted_y = m(sorted_g, sorted_x, sorted_ntype, sorted_etype, presorted=False)
    assert sorted_y.shape == (g.num_nodes(), head_size * num_heads)
    # TODO(minjie): enable the following check
    #assert th.allclose(y, sorted_y[rev_idx], atol=1e-4, rtol=1e-4)
1443

1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
@pytest.mark.parametrize('self_loop', [True, False])
@pytest.mark.parametrize('get_distances', [True, False])
def test_radius_graph(self_loop, get_distances):
    pos = th.tensor([[0.1, 0.3, 0.4],
                     [0.5, 0.2, 0.1],
                     [0.7, 0.9, 0.5],
                     [0.3, 0.2, 0.5],
                     [0.2, 0.8, 0.2],
                     [0.9, 0.2, 0.1],
                     [0.7, 0.4, 0.4],
                     [0.2, 0.1, 0.6],
                     [0.5, 0.3, 0.5],
                     [0.4, 0.2, 0.6]])

    rg = nn.RadiusGraph(0.3, self_loop=self_loop)

    if get_distances:
        g, dists = rg(pos, get_distances=get_distances)
    else:
        g = rg(pos)

    if self_loop:
        src_target = th.tensor([0, 0, 1, 2, 3, 3, 3, 3, 3, 4, 5, 6, 6, 7, 7, 7,
                                8, 8, 8, 8, 9, 9, 9, 9])
        dst_target = th.tensor([0, 3, 1, 2, 0, 3, 7, 8, 9, 4, 5, 6, 8, 3, 7, 9,
                                3, 6, 8, 9, 3, 7, 8, 9])

        if get_distances:
            dists_target = th.tensor([[0.0000],
                                      [0.2449],
                                      [0.0000],
                                      [0.0000],
                                      [0.2449],
                                      [0.0000],
                                      [0.1732],
                                      [0.2236],
                                      [0.1414],
                                      [0.0000],
                                      [0.0000],
                                      [0.0000],
                                      [0.2449],
                                      [0.1732],
                                      [0.0000],
                                      [0.2236],
                                      [0.2236],
                                      [0.2449],
                                      [0.0000],
                                      [0.1732],
                                      [0.1414],
                                      [0.2236],
                                      [0.1732],
                                      [0.0000]])
    else:
        src_target = th.tensor([0, 3, 3, 3, 3, 6, 7, 7, 8, 8, 8, 9, 9, 9])
        dst_target = th.tensor([3, 0, 7, 8, 9, 8, 3, 9, 3, 6, 9, 3, 7, 8])

        if get_distances:
            dists_target = th.tensor([[0.2449],
                                      [0.2449],
                                      [0.1732],
                                      [0.2236],
                                      [0.1414],
                                      [0.2449],
                                      [0.1732],
                                      [0.2236],
                                      [0.2236],
                                      [0.2449],
                                      [0.1732],
                                      [0.1414],
                                      [0.2236],
                                      [0.1732]])

    src, dst = g.edges()

    assert th.equal(src, src_target)
    assert th.equal(dst, dst_target)

    if get_distances:
        assert th.allclose(dists, dists_target, rtol=1e-03)

nv-dlasalle's avatar
nv-dlasalle committed
1524
@parametrize_idtype
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
def test_group_rev_res(idtype):
    dev = F.ctx()

    num_nodes = 5
    num_edges = 20
    feats = 32
    groups = 2
    g = dgl.rand_graph(num_nodes, num_edges).to(dev)
    h = th.randn(num_nodes, feats).to(dev)
    conv = nn.GraphConv(feats // groups, feats // groups)
    model = nn.GroupRevRes(conv, groups).to(dev)
1536
1537
    result = model(g, h)
    result.sum().backward()
rudongyu's avatar
rudongyu committed
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555

@pytest.mark.parametrize('in_size', [16, 32])
@pytest.mark.parametrize('hidden_size', [16, 32])
@pytest.mark.parametrize('out_size', [16, 32])
@pytest.mark.parametrize('edge_feat_size', [16, 10, 0])
def test_egnn_conv(in_size, hidden_size, out_size, edge_feat_size):
    dev = F.ctx()
    num_nodes = 5
    num_edges = 20
    g = dgl.rand_graph(num_nodes, num_edges).to(dev)
    h = th.randn(num_nodes, in_size).to(dev)
    x = th.randn(num_nodes, 3).to(dev)
    e = th.randn(num_edges, edge_feat_size).to(dev)
    model = nn.EGNNConv(in_size, hidden_size, out_size, edge_feat_size).to(dev)
    model(g, h, x, e)

@pytest.mark.parametrize('in_size', [16, 32])
@pytest.mark.parametrize('out_size', [16, 32])
Mufei Li's avatar
Mufei Li committed
1556
@pytest.mark.parametrize('aggregators',
rudongyu's avatar
rudongyu committed
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
    [['mean', 'max', 'sum'], ['min', 'std', 'var'], ['moment3', 'moment4', 'moment5']])
@pytest.mark.parametrize('scalers', [['identity'], ['amplification', 'attenuation']])
@pytest.mark.parametrize('delta', [2.5, 7.4])
@pytest.mark.parametrize('dropout', [0., 0.1])
@pytest.mark.parametrize('num_towers', [1, 4])
@pytest.mark.parametrize('edge_feat_size', [16, 0])
@pytest.mark.parametrize('residual', [True, False])
def test_pna_conv(in_size, out_size, aggregators, scalers, delta,
    dropout, num_towers, edge_feat_size, residual):
    dev = F.ctx()
    num_nodes = 5
    num_edges = 20
    g = dgl.rand_graph(num_nodes, num_edges).to(dev)
    h = th.randn(num_nodes, in_size).to(dev)
    e = th.randn(num_edges, edge_feat_size).to(dev)
    model = nn.PNAConv(in_size, out_size, aggregators, scalers, delta, dropout,
        num_towers, edge_feat_size, residual).to(dev)
    model(g, h, edge_feat=e)
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623

@pytest.mark.parametrize('k', [3, 5])
@pytest.mark.parametrize('alpha', [0., 0.5, 1.])
@pytest.mark.parametrize('norm_type', ['sym', 'row'])
@pytest.mark.parametrize('clamp', [True, False])
@pytest.mark.parametrize('normalize', [True, False])
@pytest.mark.parametrize('reset', [True, False])
def test_label_prop(k, alpha, norm_type, clamp, normalize, reset):
    dev = F.ctx()
    num_nodes = 5
    num_edges = 20
    num_classes = 4
    g = dgl.rand_graph(num_nodes, num_edges).to(dev)
    labels = th.tensor([0, 2, 1, 3, 0]).long().to(dev)
    ml_labels = th.rand(num_nodes, num_classes).to(dev) > 0.7
    mask = th.tensor([0, 1, 1, 1, 0]).bool().to(dev)
    model = nn.LabelPropagation(k, alpha, norm_type, clamp, normalize, reset)
    model(g, labels, mask)
    # multi-label case
    model(g, ml_labels, mask)

@pytest.mark.parametrize('in_size', [16, 32])
@pytest.mark.parametrize('out_size', [16, 32])
@pytest.mark.parametrize('aggregators',
    [['mean', 'max', 'dir2-av'], ['min', 'std', 'dir1-dx'], ['moment3', 'moment4', 'dir3-av']])
@pytest.mark.parametrize('scalers', [['identity'], ['amplification', 'attenuation']])
@pytest.mark.parametrize('delta', [2.5, 7.4])
@pytest.mark.parametrize('dropout', [0., 0.1])
@pytest.mark.parametrize('num_towers', [1, 4])
@pytest.mark.parametrize('edge_feat_size', [16, 0])
@pytest.mark.parametrize('residual', [True, False])
def test_dgn_conv(in_size, out_size, aggregators, scalers, delta,
    dropout, num_towers, edge_feat_size, residual):
    dev = F.ctx()
    num_nodes = 5
    num_edges = 20
    g = dgl.rand_graph(num_nodes, num_edges).to(dev)
    h = th.randn(num_nodes, in_size).to(dev)
    e = th.randn(num_edges, edge_feat_size).to(dev)
    transform = dgl.LaplacianPE(k=3, feat_name='eig')
    g = transform(g)
    eig = g.ndata['eig']
    model = nn.DGNConv(in_size, out_size, aggregators, scalers, delta, dropout,
        num_towers, edge_feat_size, residual).to(dev)
    model(g, h, edge_feat=e, eig_vec=eig)

    aggregators_non_eig = [aggr for aggr in aggregators if not aggr.startswith('dir')]
    model = nn.DGNConv(in_size, out_size, aggregators_non_eig, scalers, delta, dropout,
        num_towers, edge_feat_size, residual).to(dev)
YJ-Zhao's avatar
YJ-Zhao committed
1624
    model(g, h, edge_feat=e)