test_nn.py 28.4 KB
Newer Older
1
2
3
4
import torch as th
import networkx as nx
import dgl
import dgl.nn.pytorch as nn
5
import dgl.function as fn
6
import backend as F
7
import pytest
8
9
from test_utils.graph_cases import get_cases, random_graph, random_bipartite, random_dglgraph
from test_utils import parametrize_dtype
10
11
from copy import deepcopy

12
13
14
import numpy as np
import scipy as sp

15
16
17
18
19
def _AXWb(A, X, W, b):
    X = th.matmul(X, W)
    Y = th.matmul(A, X.view(X.shape[0], -1)).view_as(X)
    return Y + b

20
21
def test_graph_conv0():
    g = dgl.DGLGraph(nx.path_graph(3)).to(F.ctx())
22
23
    ctx = F.ctx()
    adj = g.adjacency_matrix(ctx=ctx)
24

25
    conv = nn.GraphConv(5, 2, norm='none', bias=True)
26
    conv = conv.to(ctx)
27
28
    print(conv)
    # test#1: basic
29
    h0 = F.ones((3, 5))
30
    h1 = conv(g, h0)
31
32
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
33
    assert F.allclose(h1, _AXWb(adj, h0, conv.weight, conv.bias))
34
    # test#2: more-dim
35
    h0 = F.ones((3, 5, 5))
36
    h1 = conv(g, h0)
37
38
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
39
    assert F.allclose(h1, _AXWb(adj, h0, conv.weight, conv.bias))
40
41

    conv = nn.GraphConv(5, 2)
42
    conv = conv.to(ctx)
43
    # test#3: basic
44
    h0 = F.ones((3, 5))
45
    h1 = conv(g, h0)
46
47
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
48
    # test#4: basic
49
    h0 = F.ones((3, 5, 5))
50
    h1 = conv(g, h0)
51
52
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
53
54

    conv = nn.GraphConv(5, 2)
55
    conv = conv.to(ctx)
56
    # test#3: basic
57
    h0 = F.ones((3, 5))
58
    h1 = conv(g, h0)
59
60
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
61
    # test#4: basic
62
    h0 = F.ones((3, 5, 5))
63
    h1 = conv(g, h0)
64
65
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
66
67
68
69
70

    # test rest_parameters
    old_weight = deepcopy(conv.weight.data)
    conv.reset_parameters()
    new_weight = conv.weight.data
71
    assert not F.allclose(old_weight, new_weight)
72

73
74
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['homo', 'bipartite'], exclude=['zero-degree', 'dglgraph']))
75
76
77
@pytest.mark.parametrize('norm', ['none', 'both', 'right'])
@pytest.mark.parametrize('weight', [True, False])
@pytest.mark.parametrize('bias', [True, False])
78
79
80
def test_graph_conv(idtype, g, norm, weight, bias):
    # Test one tensor input
    g = g.astype(idtype).to(F.ctx())
81
82
    conv = nn.GraphConv(5, 2, norm=norm, weight=weight, bias=bias).to(F.ctx())
    ext_w = F.randn((5, 2)).to(F.ctx())
83
84
    nsrc = g.number_of_src_nodes()
    ndst = g.number_of_dst_nodes()
85
86
    h = F.randn((nsrc, 5)).to(F.ctx())
    if weight:
87
        h_out = conv(g, h)
88
    else:
89
90
91
        h_out = conv(g, h, weight=ext_w)
    assert h_out.shape == (ndst, 2)

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['bipartite'], exclude=['zero-degree', 'dglgraph']))
@pytest.mark.parametrize('norm', ['none', 'both', 'right'])
@pytest.mark.parametrize('weight', [True, False])
@pytest.mark.parametrize('bias', [True, False])
def test_graph_conv_bi(idtype, g, norm, weight, bias):
    # Test a pair of tensor inputs
    g = g.astype(idtype).to(F.ctx())
    conv = nn.GraphConv(5, 2, norm=norm, weight=weight, bias=bias).to(F.ctx())
    ext_w = F.randn((5, 2)).to(F.ctx())
    nsrc = g.number_of_src_nodes()
    ndst = g.number_of_dst_nodes()
    h = F.randn((nsrc, 5)).to(F.ctx())
    h_dst = F.randn((ndst, 2)).to(F.ctx())
    if weight:
        h_out = conv(g, (h, h_dst))
    else:
        h_out = conv(g, (h, h_dst), weight=ext_w)
    assert h_out.shape == (ndst, 2)
111

112
113
114
115
116
117
118
119
120
121
122
123
def _S2AXWb(A, N, X, W, b):
    X1 = X * N
    X1 = th.matmul(A, X1.view(X1.shape[0], -1))
    X1 = X1 * N
    X2 = X1 * N
    X2 = th.matmul(A, X2.view(X2.shape[0], -1))
    X2 = X2 * N
    X = th.cat([X, X1, X2], dim=-1)
    Y = th.matmul(X, W.rot90())

    return Y + b

124
def test_tagconv():
125
    g = dgl.DGLGraph(nx.path_graph(3))
126
    g = g.to(F.ctx())
127
128
129
130
    ctx = F.ctx()
    adj = g.adjacency_matrix(ctx=ctx)
    norm = th.pow(g.in_degrees().float(), -0.5)

131
    conv = nn.TAGConv(5, 2, bias=True)
132
    conv = conv.to(ctx)
133
134
135
136
    print(conv)

    # test#1: basic
    h0 = F.ones((3, 5))
137
    h1 = conv(g, h0)
138
139
140
141
142
143
144
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    shp = norm.shape + (1,) * (h0.dim() - 1)
    norm = th.reshape(norm, shp).to(ctx)

    assert F.allclose(h1, _S2AXWb(adj, norm, h0, conv.lin.weight, conv.lin.bias))

145
    conv = nn.TAGConv(5, 2)
146
    conv = conv.to(ctx)
147

148
149
    # test#2: basic
    h0 = F.ones((3, 5))
150
    h1 = conv(g, h0)
151
    assert h1.shape[-1] == 2
152

153
    # test reset_parameters
154
155
156
157
158
    old_weight = deepcopy(conv.lin.weight.data)
    conv.reset_parameters()
    new_weight = conv.lin.weight.data
    assert not F.allclose(old_weight, new_weight)

159
def test_set2set():
160
    ctx = F.ctx()
161
    g = dgl.DGLGraph(nx.path_graph(10))
162
    g = g.to(F.ctx())
163
164

    s2s = nn.Set2Set(5, 3, 3) # hidden size 5, 3 iters, 3 layers
165
    s2s = s2s.to(ctx)
166
167
168
    print(s2s)

    # test#1: basic
169
    h0 = F.randn((g.number_of_nodes(), 5))
170
    h1 = s2s(g, h0)
171
    assert h1.shape[0] == 1 and h1.shape[1] == 10 and h1.dim() == 2
172
173

    # test#2: batched graph
174
175
    g1 = dgl.DGLGraph(nx.path_graph(11)).to(F.ctx())
    g2 = dgl.DGLGraph(nx.path_graph(5)).to(F.ctx())
176
    bg = dgl.batch([g, g1, g2])
177
    h0 = F.randn((bg.number_of_nodes(), 5))
178
    h1 = s2s(bg, h0)
179
180
181
    assert h1.shape[0] == 3 and h1.shape[1] == 10 and h1.dim() == 2

def test_glob_att_pool():
182
    ctx = F.ctx()
183
    g = dgl.DGLGraph(nx.path_graph(10))
184
    g = g.to(F.ctx())
185
186

    gap = nn.GlobalAttentionPooling(th.nn.Linear(5, 1), th.nn.Linear(5, 10))
187
    gap = gap.to(ctx)
188
189
190
    print(gap)

    # test#1: basic
191
    h0 = F.randn((g.number_of_nodes(), 5))
192
    h1 = gap(g, h0)
193
    assert h1.shape[0] == 1 and h1.shape[1] == 10 and h1.dim() == 2
194
195
196

    # test#2: batched graph
    bg = dgl.batch([g, g, g, g])
197
    h0 = F.randn((bg.number_of_nodes(), 5))
198
    h1 = gap(bg, h0)
199
200
201
    assert h1.shape[0] == 4 and h1.shape[1] == 10 and h1.dim() == 2

def test_simple_pool():
202
    ctx = F.ctx()
203
    g = dgl.DGLGraph(nx.path_graph(15))
204
    g = g.to(F.ctx())
205
206
207
208
209
210
211
212

    sum_pool = nn.SumPooling()
    avg_pool = nn.AvgPooling()
    max_pool = nn.MaxPooling()
    sort_pool = nn.SortPooling(10) # k = 10
    print(sum_pool, avg_pool, max_pool, sort_pool)

    # test#1: basic
213
    h0 = F.randn((g.number_of_nodes(), 5))
214
215
216
217
    sum_pool = sum_pool.to(ctx)
    avg_pool = avg_pool.to(ctx)
    max_pool = max_pool.to(ctx)
    sort_pool = sort_pool.to(ctx)
218
    h1 = sum_pool(g, h0)
219
    assert F.allclose(F.squeeze(h1, 0), F.sum(h0, 0))
220
    h1 = avg_pool(g, h0)
221
    assert F.allclose(F.squeeze(h1, 0), F.mean(h0, 0))
222
    h1 = max_pool(g, h0)
223
    assert F.allclose(F.squeeze(h1, 0), F.max(h0, 0))
224
    h1 = sort_pool(g, h0)
225
    assert h1.shape[0] == 1 and h1.shape[1] == 10 * 5 and h1.dim() == 2
226
227

    # test#2: batched graph
228
    g_ = dgl.DGLGraph(nx.path_graph(5)).to(F.ctx())
229
    bg = dgl.batch([g, g_, g, g_, g])
230
    h0 = F.randn((bg.number_of_nodes(), 5))
231
    h1 = sum_pool(bg, h0)
232
233
234
235
236
237
    truth = th.stack([F.sum(h0[:15], 0),
                      F.sum(h0[15:20], 0),
                      F.sum(h0[20:35], 0),
                      F.sum(h0[35:40], 0),
                      F.sum(h0[40:55], 0)], 0)
    assert F.allclose(h1, truth)
238

239
    h1 = avg_pool(bg, h0)
240
241
242
243
244
245
    truth = th.stack([F.mean(h0[:15], 0),
                      F.mean(h0[15:20], 0),
                      F.mean(h0[20:35], 0),
                      F.mean(h0[35:40], 0),
                      F.mean(h0[40:55], 0)], 0)
    assert F.allclose(h1, truth)
246

247
    h1 = max_pool(bg, h0)
248
249
250
251
252
253
    truth = th.stack([F.max(h0[:15], 0),
                      F.max(h0[15:20], 0),
                      F.max(h0[20:35], 0),
                      F.max(h0[35:40], 0),
                      F.max(h0[40:55], 0)], 0)
    assert F.allclose(h1, truth)
254

255
    h1 = sort_pool(bg, h0)
256
257
258
    assert h1.shape[0] == 5 and h1.shape[1] == 10 * 5 and h1.dim() == 2

def test_set_trans():
259
    ctx = F.ctx()
260
261
262
263
264
    g = dgl.DGLGraph(nx.path_graph(15))

    st_enc_0 = nn.SetTransformerEncoder(50, 5, 10, 100, 2, 'sab')
    st_enc_1 = nn.SetTransformerEncoder(50, 5, 10, 100, 2, 'isab', 3)
    st_dec = nn.SetTransformerDecoder(50, 5, 10, 100, 2, 4)
265
266
267
    st_enc_0 = st_enc_0.to(ctx)
    st_enc_1 = st_enc_1.to(ctx)
    st_dec = st_dec.to(ctx)
268
269
270
    print(st_enc_0, st_enc_1, st_dec)

    # test#1: basic
271
    h0 = F.randn((g.number_of_nodes(), 50))
272
    h1 = st_enc_0(g, h0)
273
    assert h1.shape == h0.shape
274
    h1 = st_enc_1(g, h0)
275
    assert h1.shape == h0.shape
276
    h2 = st_dec(g, h1)
277
    assert h2.shape[0] == 1 and h2.shape[1] == 200 and h2.dim() == 2
278
279
280
281
282

    # test#2: batched graph
    g1 = dgl.DGLGraph(nx.path_graph(5))
    g2 = dgl.DGLGraph(nx.path_graph(10))
    bg = dgl.batch([g, g1, g2])
283
    h0 = F.randn((bg.number_of_nodes(), 50))
284
    h1 = st_enc_0(bg, h0)
285
    assert h1.shape == h0.shape
286
    h1 = st_enc_1(bg, h0)
287
288
    assert h1.shape == h0.shape

289
    h2 = st_dec(bg, h1)
290
291
    assert h2.shape[0] == 3 and h2.shape[1] == 200 and h2.dim() == 2

Minjie Wang's avatar
Minjie Wang committed
292
293
294
295
def test_rgcn():
    ctx = F.ctx()
    etype = []
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
296
    g = g.to(F.ctx())
Minjie Wang's avatar
Minjie Wang committed
297
298
299
300
301
302
303
304
305
    # 5 etypes
    R = 5
    for i in range(g.number_of_edges()):
        etype.append(i % 5)
    B = 2
    I = 10
    O = 8

    rgc_basis = nn.RelGraphConv(I, O, R, "basis", B).to(ctx)
306
307
308
    rgc_basis_low = nn.RelGraphConv(I, O, R, "basis", B, low_mem=True).to(ctx)
    rgc_basis_low.weight = rgc_basis.weight
    rgc_basis_low.w_comp = rgc_basis.w_comp
Minjie Wang's avatar
Minjie Wang committed
309
310
311
    h = th.randn((100, I)).to(ctx)
    r = th.tensor(etype).to(ctx)
    h_new = rgc_basis(g, h, r)
312
    h_new_low = rgc_basis_low(g, h, r)
Minjie Wang's avatar
Minjie Wang committed
313
    assert list(h_new.shape) == [100, O]
314
315
    assert list(h_new_low.shape) == [100, O]
    assert F.allclose(h_new, h_new_low)
Minjie Wang's avatar
Minjie Wang committed
316
317

    rgc_bdd = nn.RelGraphConv(I, O, R, "bdd", B).to(ctx)
318
319
    rgc_bdd_low = nn.RelGraphConv(I, O, R, "bdd", B, low_mem=True).to(ctx)
    rgc_bdd_low.weight = rgc_bdd.weight
Minjie Wang's avatar
Minjie Wang committed
320
321
322
    h = th.randn((100, I)).to(ctx)
    r = th.tensor(etype).to(ctx)
    h_new = rgc_bdd(g, h, r)
323
    h_new_low = rgc_bdd_low(g, h, r)
Minjie Wang's avatar
Minjie Wang committed
324
    assert list(h_new.shape) == [100, O]
325
326
    assert list(h_new_low.shape) == [100, O]
    assert F.allclose(h_new, h_new_low)
Minjie Wang's avatar
Minjie Wang committed
327
328
329
330
331

    # with norm
    norm = th.zeros((g.number_of_edges(), 1)).to(ctx)

    rgc_basis = nn.RelGraphConv(I, O, R, "basis", B).to(ctx)
332
333
334
    rgc_basis_low = nn.RelGraphConv(I, O, R, "basis", B, low_mem=True).to(ctx)
    rgc_basis_low.weight = rgc_basis.weight
    rgc_basis_low.w_comp = rgc_basis.w_comp
Minjie Wang's avatar
Minjie Wang committed
335
336
337
    h = th.randn((100, I)).to(ctx)
    r = th.tensor(etype).to(ctx)
    h_new = rgc_basis(g, h, r, norm)
338
    h_new_low = rgc_basis_low(g, h, r, norm)
Minjie Wang's avatar
Minjie Wang committed
339
    assert list(h_new.shape) == [100, O]
340
341
    assert list(h_new_low.shape) == [100, O]
    assert F.allclose(h_new, h_new_low)
Minjie Wang's avatar
Minjie Wang committed
342
343

    rgc_bdd = nn.RelGraphConv(I, O, R, "bdd", B).to(ctx)
344
345
    rgc_bdd_low = nn.RelGraphConv(I, O, R, "bdd", B, low_mem=True).to(ctx)
    rgc_bdd_low.weight = rgc_bdd.weight
Minjie Wang's avatar
Minjie Wang committed
346
347
348
    h = th.randn((100, I)).to(ctx)
    r = th.tensor(etype).to(ctx)
    h_new = rgc_bdd(g, h, r, norm)
349
    h_new_low = rgc_bdd_low(g, h, r, norm)
Minjie Wang's avatar
Minjie Wang committed
350
    assert list(h_new.shape) == [100, O]
351
352
    assert list(h_new_low.shape) == [100, O]
    assert F.allclose(h_new, h_new_low)
Minjie Wang's avatar
Minjie Wang committed
353
354
355

    # id input
    rgc_basis = nn.RelGraphConv(I, O, R, "basis", B).to(ctx)
356
357
358
    rgc_basis_low = nn.RelGraphConv(I, O, R, "basis", B, low_mem=True).to(ctx)
    rgc_basis_low.weight = rgc_basis.weight
    rgc_basis_low.w_comp = rgc_basis.w_comp
Minjie Wang's avatar
Minjie Wang committed
359
360
361
    h = th.randint(0, I, (100,)).to(ctx)
    r = th.tensor(etype).to(ctx)
    h_new = rgc_basis(g, h, r)
362
    h_new_low = rgc_basis_low(g, h, r)
Minjie Wang's avatar
Minjie Wang committed
363
    assert list(h_new.shape) == [100, O]
364
365
    assert list(h_new_low.shape) == [100, O]
    assert F.allclose(h_new, h_new_low)
366

367
368
369
370
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite']))
def test_gat_conv(g, idtype):
    g = g.astype(idtype).to(F.ctx())
371
372
    ctx = F.ctx()
    gat = nn.GATConv(5, 2, 4)
373
    feat = F.randn((g.number_of_nodes(), 5))
374
    gat = gat.to(ctx)
375
    h = gat(g, feat)
376
    assert h.shape == (g.number_of_nodes(), 4, 2)
377

378
379
380
381
382
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['bipartite']))
def test_gat_conv_bi(g, idtype):
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
383
384
    gat = nn.GATConv(5, 2, 4)
    feat = (F.randn((g.number_of_src_nodes(), 5)), F.randn((g.number_of_dst_nodes(), 5)))
385
386
    gat = gat.to(ctx)
    h = gat(g, feat)
387
    assert h.shape == (g.number_of_dst_nodes(), 4, 2)
388

389
390
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite']))
391
@pytest.mark.parametrize('aggre_type', ['mean', 'pool', 'gcn', 'lstm'])
392
393
def test_sage_conv(idtype, g, aggre_type):
    g = g.astype(idtype).to(F.ctx())
394
    sage = nn.SAGEConv(5, 10, aggre_type)
395
396
    feat = F.randn((g.number_of_nodes(), 5))
    sage = sage.to(F.ctx())
397
398
399
    h = sage(g, feat)
    assert h.shape[-1] == 10

400
401
402
403
404
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['bipartite']))
@pytest.mark.parametrize('aggre_type', ['mean', 'pool', 'gcn', 'lstm'])
def test_sage_conv_bi(idtype, g, aggre_type):
    g = g.astype(idtype).to(F.ctx())
405
406
    dst_dim = 5 if aggre_type != 'gcn' else 10
    sage = nn.SAGEConv((10, dst_dim), 2, aggre_type)
407
408
    feat = (F.randn((g.number_of_src_nodes(), 10)), F.randn((g.number_of_dst_nodes(), dst_dim)))
    sage = sage.to(F.ctx())
409
410
    h = sage(g, feat)
    assert h.shape[-1] == 2
411
    assert h.shape[0] == g.number_of_dst_nodes()
412

413
414
415
@parametrize_dtype
def test_sage_conv2(idtype):
    # TODO: add test for blocks
Mufei Li's avatar
Mufei Li committed
416
417
    # Test the case for graphs without edges
    g = dgl.bipartite([], num_nodes=(5, 3))
418
419
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
Mufei Li's avatar
Mufei Li committed
420
421
422
    sage = nn.SAGEConv((3, 3), 2, 'gcn')
    feat = (F.randn((5, 3)), F.randn((3, 3)))
    sage = sage.to(ctx)
423
    h = sage(g, (F.copy_to(feat[0], F.ctx()), F.copy_to(feat[1], F.ctx())))
Mufei Li's avatar
Mufei Li committed
424
425
426
427
428
429
430
431
432
433
    assert h.shape[-1] == 2
    assert h.shape[0] == 3
    for aggre_type in ['mean', 'pool', 'lstm']:
        sage = nn.SAGEConv((3, 1), 2, aggre_type)
        feat = (F.randn((5, 3)), F.randn((3, 1)))
        sage = sage.to(ctx)
        h = sage(g, feat)
        assert h.shape[-1] == 2
        assert h.shape[0] == 3

434
435
436
def test_sgc_conv():
    ctx = F.ctx()
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
437
    g = g.to(F.ctx())
438
439
440
    # not cached
    sgc = nn.SGConv(5, 10, 3)
    feat = F.randn((100, 5))
441
    sgc = sgc.to(ctx)
442

443
    h = sgc(g, feat)
444
445
446
447
    assert h.shape[-1] == 10

    # cached
    sgc = nn.SGConv(5, 10, 3, True)
448
    sgc = sgc.to(ctx)
449
450
    h_0 = sgc(g, feat)
    h_1 = sgc(g, feat + 1)
451
452
453
454
455
456
    assert F.allclose(h_0, h_1)
    assert h_0.shape[-1] == 10

def test_appnp_conv():
    ctx = F.ctx()
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
457
    g = g.to(F.ctx())
458
459
    appnp = nn.APPNPConv(10, 0.1)
    feat = F.randn((100, 5))
460
    appnp = appnp.to(ctx)
461

462
    h = appnp(g, feat)
463
464
    assert h.shape[-1] == 5

465
466
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite']))
467
@pytest.mark.parametrize('aggregator_type', ['mean', 'max', 'sum'])
468
469
def test_gin_conv(g, idtype, aggregator_type):
    g = g.astype(idtype).to(F.ctx())
470
471
472
473
474
    ctx = F.ctx()
    gin = nn.GINConv(
        th.nn.Linear(5, 12),
        aggregator_type
    )
475
    feat = F.randn((g.number_of_nodes(), 5))
476
477
    gin = gin.to(ctx)
    h = gin(g, feat)
478
    assert h.shape == (g.number_of_nodes(), 12)
479

480
481
482
483
484
485
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['bipartite']))
@pytest.mark.parametrize('aggregator_type', ['mean', 'max', 'sum'])
def test_gin_conv_bi(g, idtype, aggregator_type):
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
486
487
488
489
    gin = nn.GINConv(
        th.nn.Linear(5, 12),
        aggregator_type
    )
490
    feat = (F.randn((g.number_of_src_nodes(), 5)), F.randn((g.number_of_dst_nodes(), 5)))
491
492
    gin = gin.to(ctx)
    h = gin(g, feat)
493
    assert h.shape == (g.number_of_dst_nodes(), 12)
494

495
496
497
498
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite']))
def test_agnn_conv(g, idtype):
    g = g.astype(idtype).to(F.ctx())
499
500
    ctx = F.ctx()
    agnn = nn.AGNNConv(1)
501
    feat = F.randn((g.number_of_nodes(), 5))
502
    agnn = agnn.to(ctx)
503
    h = agnn(g, feat)
504
    assert h.shape == (g.number_of_nodes(), 5)
505

506
507
508
509
510
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['bipartite']))
def test_agnn_conv_bi(g, idtype):
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
511
    agnn = nn.AGNNConv(1)
512
    feat = (F.randn((g.number_of_src_nodes(), 5)), F.randn((g.number_of_dst_nodes(), 5)))
513
514
    agnn = agnn.to(ctx)
    h = agnn(g, feat)
515
    assert h.shape == (g.number_of_dst_nodes(), 5)
516

517
518
519
def test_gated_graph_conv():
    ctx = F.ctx()
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
520
    g = g.to(F.ctx())
521
522
523
    ggconv = nn.GatedGraphConv(5, 10, 5, 3)
    etypes = th.arange(g.number_of_edges()) % 3
    feat = F.randn((100, 5))
524
525
    ggconv = ggconv.to(ctx)
    etypes = etypes.to(ctx)
526

527
    h = ggconv(g, feat, etypes)
528
529
530
    # current we only do shape check
    assert h.shape[-1] == 10

531
532
533
534
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite']))
def test_nn_conv(g, idtype):
    g = g.astype(idtype).to(F.ctx())
535
536
537
    ctx = F.ctx()
    edge_func = th.nn.Linear(4, 5 * 10)
    nnconv = nn.NNConv(5, 10, edge_func, 'mean')
538
    feat = F.randn((g.number_of_nodes(), 5))
539
540
541
542
543
544
    efeat = F.randn((g.number_of_edges(), 4))
    nnconv = nnconv.to(ctx)
    h = nnconv(g, feat, efeat)
    # currently we only do shape check
    assert h.shape[-1] == 10

545
546
547
548
549
550
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['bipartite']))
def test_nn_conv_bi(g, idtype):
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
    #g = dgl.bipartite(sp.sparse.random(50, 100, density=0.1))
551
552
    edge_func = th.nn.Linear(4, 5 * 10)
    nnconv = nn.NNConv((5, 2), 10, edge_func, 'mean')
553
554
    feat = F.randn((g.number_of_src_nodes(), 5))
    feat_dst = F.randn((g.number_of_dst_nodes(), 2))
555
556
557
558
559
560
    efeat = F.randn((g.number_of_edges(), 4))
    nnconv = nnconv.to(ctx)
    h = nnconv(g, (feat, feat_dst), efeat)
    # currently we only do shape check
    assert h.shape[-1] == 10

561
562
563
564
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['homo']))
def test_gmm_conv(g, idtype):
    g = g.astype(idtype).to(F.ctx())
565
566
    ctx = F.ctx()
    gmmconv = nn.GMMConv(5, 10, 3, 4, 'mean')
567
    feat = F.randn((g.number_of_nodes(), 5))
568
    pseudo = F.randn((g.number_of_edges(), 3))
569
    gmmconv = gmmconv.to(ctx)
570
    h = gmmconv(g, feat, pseudo)
571
572
573
    # currently we only do shape check
    assert h.shape[-1] == 10

574
575
576
577
578
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['bipartite', 'block-bipartite']))
def test_gmm_conv_bi(g, idtype):
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
579
    gmmconv = nn.GMMConv((5, 2), 10, 3, 4, 'mean')
580
581
    feat = F.randn((g.number_of_src_nodes(), 5))
    feat_dst = F.randn((g.number_of_dst_nodes(), 2))
582
583
584
585
586
587
    pseudo = F.randn((g.number_of_edges(), 3))
    gmmconv = gmmconv.to(ctx)
    h = gmmconv(g, (feat, feat_dst), pseudo)
    # currently we only do shape check
    assert h.shape[-1] == 10

588
@parametrize_dtype
589
@pytest.mark.parametrize('norm_type', ['both', 'right', 'none'])
590
591
592
@pytest.mark.parametrize('g', get_cases(['homo', 'bipartite']))
def test_dense_graph_conv(norm_type, g, idtype):
    g = g.astype(idtype).to(F.ctx())
593
    ctx = F.ctx()
594
    # TODO(minjie): enable the following option after #1385
595
    adj = g.adjacency_matrix(ctx=ctx).to_dense()
596
597
    conv = nn.GraphConv(5, 2, norm=norm_type, bias=True)
    dense_conv = nn.DenseGraphConv(5, 2, norm=norm_type, bias=True)
598
599
    dense_conv.weight.data = conv.weight.data
    dense_conv.bias.data = conv.bias.data
600
    feat = F.randn((g.number_of_src_nodes(), 5))
601
602
    conv = conv.to(ctx)
    dense_conv = dense_conv.to(ctx)
603
604
    out_conv = conv(g, feat)
    out_dense_conv = dense_conv(adj, feat)
605
606
    assert F.allclose(out_conv, out_dense_conv)

607
608
609
610
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['homo', 'bipartite']))
def test_dense_sage_conv(g, idtype):
    g = g.astype(idtype).to(F.ctx())
611
612
    ctx = F.ctx()
    adj = g.adjacency_matrix(ctx=ctx).to_dense()
613
    sage = nn.SAGEConv(5, 2, 'gcn')
614
615
616
    dense_sage = nn.DenseSAGEConv(5, 2)
    dense_sage.fc.weight.data = sage.fc_neigh.weight.data
    dense_sage.fc.bias.data = sage.fc_neigh.bias.data
617
618
619
620
621
622
623
    if len(g.ntypes) == 2:
        feat = (
            F.randn((g.number_of_src_nodes(), 5)),
            F.randn((g.number_of_dst_nodes(), 5))
        )
    else:
        feat = F.randn((g.number_of_nodes(), 5))
624
625
    sage = sage.to(ctx)
    dense_sage = dense_sage.to(ctx)
626
627
    out_sage = sage(g, feat)
    out_dense_sage = dense_sage(adj, feat)
628
629
    assert F.allclose(out_sage, out_dense_sage), g

630
631
632
633
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite']))
def test_edge_conv(g, idtype):
    g = g.astype(idtype).to(F.ctx())
634
635
636
    ctx = F.ctx()
    edge_conv = nn.EdgeConv(5, 2).to(ctx)
    print(edge_conv)
637
638
639
    h0 = F.randn((g.number_of_nodes(), 5))
    h1 = edge_conv(g, h0)
    assert h1.shape == (g.number_of_nodes(), 2)
640

641
642
643
644
645
646
647
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['bipartite']))
def test_edge_conv_bi(g, idtype):
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
    edge_conv = nn.EdgeConv(5, 2).to(ctx)
    print(edge_conv)
648
    h0 = F.randn((g.number_of_src_nodes(), 5))
649
650
    x0 = F.randn((g.number_of_dst_nodes(), 5))
    h1 = edge_conv(g, (h0, x0))
651
    assert h1.shape == (g.number_of_dst_nodes(), 2)
652
653
654
655
656

def test_dense_cheb_conv():
    for k in range(1, 4):
        ctx = F.ctx()
        g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True)
657
        g = g.to(F.ctx())
658
        adj = g.adjacency_matrix(ctx=ctx).to_dense()
Axel Nilsson's avatar
Axel Nilsson committed
659
        cheb = nn.ChebConv(5, 2, k, None)
660
        dense_cheb = nn.DenseChebConv(5, 2, k)
Axel Nilsson's avatar
Axel Nilsson committed
661
662
663
664
665
        #for i in range(len(cheb.fc)):
        #    dense_cheb.W.data[i] = cheb.fc[i].weight.data.t()
        dense_cheb.W.data = cheb.linear.weight.data.transpose(-1, -2).view(k, 5, 2)
        if cheb.linear.bias is not None:
            dense_cheb.bias.data = cheb.linear.bias.data
666
        feat = F.randn((100, 5))
667
668
        cheb = cheb.to(ctx)
        dense_cheb = dense_cheb.to(ctx)
669
670
        out_cheb = cheb(g, feat, [2.0])
        out_dense_cheb = dense_cheb(adj, feat, 2.0)
Axel Nilsson's avatar
Axel Nilsson committed
671
        print(k, out_cheb, out_dense_cheb)
672
673
        assert F.allclose(out_cheb, out_dense_cheb)

674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
def test_sequential():
    ctx = F.ctx()
    # Test single graph
    class ExampleLayer(th.nn.Module):
        def __init__(self):
            super().__init__()

        def forward(self, graph, n_feat, e_feat):
            graph = graph.local_var()
            graph.ndata['h'] = n_feat
            graph.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
            n_feat += graph.ndata['h']
            graph.apply_edges(fn.u_add_v('h', 'h', 'e'))
            e_feat += graph.edata['e']
            return n_feat, e_feat

    g = dgl.DGLGraph()
    g.add_nodes(3)
    g.add_edges([0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1, 2, 2, 2])
693
    g = g.to(F.ctx())
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
    net = nn.Sequential(ExampleLayer(), ExampleLayer(), ExampleLayer())
    n_feat = F.randn((3, 4))
    e_feat = F.randn((9, 4))
    net = net.to(ctx)
    n_feat, e_feat = net(g, n_feat, e_feat)
    assert n_feat.shape == (3, 4)
    assert e_feat.shape == (9, 4)

    # Test multiple graph
    class ExampleLayer(th.nn.Module):
        def __init__(self):
            super().__init__()

        def forward(self, graph, n_feat):
            graph = graph.local_var()
            graph.ndata['h'] = n_feat
            graph.update_all(fn.copy_u('h', 'm'), fn.sum('m', 'h'))
            n_feat += graph.ndata['h']
            return n_feat.view(graph.number_of_nodes() // 2, 2, -1).sum(1)

714
715
716
    g1 = dgl.DGLGraph(nx.erdos_renyi_graph(32, 0.05)).to(F.ctx())
    g2 = dgl.DGLGraph(nx.erdos_renyi_graph(16, 0.2)).to(F.ctx())
    g3 = dgl.DGLGraph(nx.erdos_renyi_graph(8, 0.8)).to(F.ctx())
717
718
719
720
721
722
    net = nn.Sequential(ExampleLayer(), ExampleLayer(), ExampleLayer())
    net = net.to(ctx)
    n_feat = F.randn((32, 4))
    n_feat = net([g1, g2, g3], n_feat)
    assert n_feat.shape == (4, 4)

723
def test_atomic_conv():
724
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True).to(F.ctx())
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
    aconv = nn.AtomicConv(interaction_cutoffs=F.tensor([12.0, 12.0]),
                          rbf_kernel_means=F.tensor([0.0, 2.0]),
                          rbf_kernel_scaling=F.tensor([4.0, 4.0]),
                          features_to_use=F.tensor([6.0, 8.0]))

    ctx = F.ctx()
    if F.gpu_ctx():
        aconv = aconv.to(ctx)

    feat = F.randn((100, 1))
    dist = F.randn((g.number_of_edges(), 1))

    h = aconv(g, feat, dist)
    # current we only do shape check
    assert h.shape[-1] == 4

def test_cf_conv():
742
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True).to(F.ctx())
743
744
745
746
747
748
749
750
751
752
753
754
755
    cfconv = nn.CFConv(node_in_feats=2,
                       edge_in_feats=3,
                       hidden_feats=2,
                       out_feats=3)

    ctx = F.ctx()
    if F.gpu_ctx():
        cfconv = cfconv.to(ctx)

    node_feats = F.randn((100, 2))
    edge_feats = F.randn((g.number_of_edges(), 3))
    h = cfconv(g, node_feats, edge_feats)
    # current we only do shape check
756
    assert h.shape[-1] == 3
757

758
759
760
761
762
763
def myagg(alist, dsttype):
    rst = alist[0]
    for i in range(1, len(alist)):
        rst = rst + (i + 1) * alist[i]
    return rst

764
@parametrize_dtype
765
@pytest.mark.parametrize('agg', ['sum', 'max', 'min', 'mean', 'stack', myagg])
766
def test_hetero_conv(agg, idtype):
767
768
769
    g = dgl.heterograph({
        ('user', 'follows', 'user'): [(0, 1), (0, 2), (2, 1), (1, 3)],
        ('user', 'plays', 'game'): [(0, 0), (0, 2), (0, 3), (1, 0), (2, 2)],
770
771
        ('store', 'sells', 'game'): [(0, 0), (0, 3), (1, 1), (1, 2)]},
        idtype=idtype, device=F.ctx())
772
773
774
775
776
    conv = nn.HeteroGraphConv({
        'follows': nn.GraphConv(2, 3),
        'plays': nn.GraphConv(2, 4),
        'sells': nn.GraphConv(3, 4)},
        agg)
777
    conv = conv.to(F.ctx())
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
    uf = F.randn((4, 2))
    gf = F.randn((4, 4))
    sf = F.randn((2, 3))
    uf_dst = F.randn((4, 3))
    gf_dst = F.randn((4, 4))

    h = conv(g, {'user': uf})
    assert set(h.keys()) == {'user', 'game'}
    if agg != 'stack':
        assert h['user'].shape == (4, 3)
        assert h['game'].shape == (4, 4)
    else:
        assert h['user'].shape == (4, 1, 3)
        assert h['game'].shape == (4, 1, 4)

    h = conv(g, {'user': uf, 'store': sf})
    assert set(h.keys()) == {'user', 'game'}
    if agg != 'stack':
        assert h['user'].shape == (4, 3)
        assert h['game'].shape == (4, 4)
    else:
        assert h['user'].shape == (4, 1, 3)
        assert h['game'].shape == (4, 2, 4)

    h = conv(g, {'store': sf})
    assert set(h.keys()) == {'game'}
    if agg != 'stack':
        assert h['game'].shape == (4, 4)
    else:
        assert h['game'].shape == (4, 1, 4)

    # test with pair input
    conv = nn.HeteroGraphConv({
        'follows': nn.SAGEConv(2, 3, 'mean'),
        'plays': nn.SAGEConv((2, 4), 4, 'mean'),
        'sells': nn.SAGEConv(3, 4, 'mean')},
        agg)
815
    conv = conv.to(F.ctx())
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855

    h = conv(g, ({'user': uf}, {'user' : uf, 'game' : gf}))
    assert set(h.keys()) == {'user', 'game'}
    if agg != 'stack':
        assert h['user'].shape == (4, 3)
        assert h['game'].shape == (4, 4)
    else:
        assert h['user'].shape == (4, 1, 3)
        assert h['game'].shape == (4, 1, 4)

    # pair input requires both src and dst type features to be provided
    h = conv(g, ({'user': uf}, {'game' : gf}))
    assert set(h.keys()) == {'game'}
    if agg != 'stack':
        assert h['game'].shape == (4, 4)
    else:
        assert h['game'].shape == (4, 1, 4)

    # test with mod args
    class MyMod(th.nn.Module):
        def __init__(self, s1, s2):
            super(MyMod, self).__init__()
            self.carg1 = 0
            self.carg2 = 0
            self.s1 = s1
            self.s2 = s2
        def forward(self, g, h, arg1=None, *, arg2=None):
            if arg1 is not None:
                self.carg1 += 1
            if arg2 is not None:
                self.carg2 += 1
            return th.zeros((g.number_of_dst_nodes(), self.s2))
    mod1 = MyMod(2, 3)
    mod2 = MyMod(2, 4)
    mod3 = MyMod(3, 4)
    conv = nn.HeteroGraphConv({
        'follows': mod1,
        'plays': mod2,
        'sells': mod3},
        agg)
856
    conv = conv.to(F.ctx())
857
858
859
860
861
862
863
864
865
866
    mod_args = {'follows' : (1,), 'plays' : (1,)}
    mod_kwargs = {'sells' : {'arg2' : 'abc'}}
    h = conv(g, {'user' : uf, 'store' : sf}, mod_args=mod_args, mod_kwargs=mod_kwargs)
    assert mod1.carg1 == 1
    assert mod1.carg2 == 0
    assert mod2.carg1 == 1
    assert mod2.carg2 == 0
    assert mod3.carg1 == 0
    assert mod3.carg2 == 1

867
868
if __name__ == '__main__':
    test_graph_conv()
869
870
871
872
    test_set2set()
    test_glob_att_pool()
    test_simple_pool()
    test_set_trans()
Minjie Wang's avatar
Minjie Wang committed
873
    test_rgcn()
874
875
876
877
878
879
880
881
882
883
884
885
886
    test_tagconv()
    test_gat_conv()
    test_sage_conv()
    test_sgc_conv()
    test_appnp_conv()
    test_gin_conv()
    test_agnn_conv()
    test_gated_graph_conv()
    test_nn_conv()
    test_gmm_conv()
    test_dense_graph_conv()
    test_dense_sage_conv()
    test_dense_cheb_conv()
887
    test_sequential()
888
889
    test_atomic_conv()
    test_cf_conv()