"vscode:/vscode.git/clone" did not exist on "fffa2e1f4b7534d5f86e900838d9a24dfba307c9"
test_dist_graph_store.py 13.9 KB
Newer Older
1
2
3
4
5
6
import os
os.environ['OMP_NUM_THREADS'] = '1'
import dgl
import sys
import numpy as np
import time
7
import socket
8
9
10
11
12
13
14
from scipy import sparse as spsp
from numpy.testing import assert_array_equal
from multiprocessing import Process, Manager, Condition, Value
import multiprocessing as mp
from dgl.graph_index import create_graph_index
from dgl.data.utils import load_graphs, save_graphs
from dgl.distributed import DistGraphServer, DistGraph
15
from dgl.distributed import partition_graph, load_partition, load_partition_book, node_split, edge_split
16
17
from dgl.distributed import SparseAdagrad, SparseNodeEmbedding
from numpy.testing import assert_almost_equal
18
import backend as F
19
import math
20
21
22
import unittest
import pickle

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
if os.name != 'nt':
    import fcntl
    import struct

def get_local_usable_addr():
    """Get local usable IP and port

    Returns
    -------
    str
        IP address, e.g., '192.168.8.12:50051'
    """
    sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
    try:
        # doesn't even have to be reachable
        sock.connect(('10.255.255.255', 1))
        ip_addr = sock.getsockname()[0]
    except ValueError:
        ip_addr = '127.0.0.1'
    finally:
        sock.close()
    sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    sock.bind(("", 0))
    sock.listen(1)
    port = sock.getsockname()[1]
    sock.close()

    return ip_addr + ' ' + str(port)

52
53
54
55
56
def create_random_graph(n):
    arr = (spsp.random(n, n, density=0.001, format='coo') != 0).astype(np.int64)
    ig = create_graph_index(arr, readonly=True)
    return dgl.DGLGraph(ig)

57
def run_server(graph_name, server_id, num_clients, shared_mem):
58
    g = DistGraphServer(server_id, "kv_ip_config.txt", num_clients,
59
60
                        '/tmp/dist_graph/{}.json'.format(graph_name),
                        disable_shared_mem=not shared_mem)
61
62
63
    print('start server', server_id)
    g.start()

64
65
66
def emb_init(shape, dtype):
    return F.zeros(shape, dtype, F.cpu())

67
68
69
def rand_init(shape, dtype):
    return F.tensor(np.random.normal(size=shape))

70
71
def run_client(graph_name, part_id, num_nodes, num_edges):
    time.sleep(5)
72
73
    gpb, graph_name = load_partition_book('/tmp/dist_graph/{}.json'.format(graph_name),
                                          part_id, None)
74
    g = DistGraph("kv_ip_config.txt", graph_name, gpb=gpb)
75
    check_dist_graph(g, num_nodes, num_edges)
76

77
def check_dist_graph(g, num_nodes, num_edges):
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
    # Test API
    assert g.number_of_nodes() == num_nodes
    assert g.number_of_edges() == num_edges

    # Test reading node data
    nids = F.arange(0, int(g.number_of_nodes() / 2))
    feats1 = g.ndata['features'][nids]
    feats = F.squeeze(feats1, 1)
    assert np.all(F.asnumpy(feats == nids))

    # Test reading edge data
    eids = F.arange(0, int(g.number_of_edges() / 2))
    feats1 = g.edata['features'][eids]
    feats = F.squeeze(feats1, 1)
    assert np.all(F.asnumpy(feats == eids))

    # Test init node data
    new_shape = (g.number_of_nodes(), 2)
96
    g.ndata['test1'] = dgl.distributed.DistTensor(g, new_shape, F.int32)
97
98
99
    feats = g.ndata['test1'][nids]
    assert np.all(F.asnumpy(feats) == 0)

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
    # reference to a one that exists
    test2 = dgl.distributed.DistTensor(g, new_shape, F.float32, 'test2', init_func=rand_init)
    test3 = dgl.distributed.DistTensor(g, new_shape, F.float32, 'test2')
    assert np.all(F.asnumpy(test2[nids]) == F.asnumpy(test3[nids]))

    # create a tensor and destroy a tensor and create it again.
    test3 = dgl.distributed.DistTensor(g, new_shape, F.float32, 'test3', init_func=rand_init)
    del test3
    test3 = dgl.distributed.DistTensor(g, (g.number_of_nodes(), 3), F.float32, 'test3')
    del test3

    # test a persistent tesnor
    test4 = dgl.distributed.DistTensor(g, new_shape, F.float32, 'test4', init_func=rand_init,
                                       persistent=True)
    del test4
    try:
        test4 = dgl.distributed.DistTensor(g, (g.number_of_nodes(), 3), F.float32, 'test4')
        raise Exception('')
    except:
        pass
120

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
    # Test sparse emb
    try:
        new_shape = (g.number_of_nodes(), 1)
        emb = SparseNodeEmbedding(g, 'emb1', new_shape, emb_init)
        lr = 0.001
        optimizer = SparseAdagrad([emb], lr=lr)
        with F.record_grad():
            feats = emb(nids)
            assert np.all(F.asnumpy(feats) == np.zeros((len(nids), 1)))
            loss = F.sum(feats + 1, 0)
        loss.backward()
        optimizer.step()
        feats = emb(nids)
        assert_almost_equal(F.asnumpy(feats), np.ones((len(nids), 1)) * -lr)
        rest = np.setdiff1d(np.arange(g.number_of_nodes()), F.asnumpy(nids))
        feats1 = emb(rest)
        assert np.all(F.asnumpy(feats1) == np.zeros((len(rest), 1)))

        policy = dgl.distributed.PartitionPolicy('node', g.get_partition_book())
140
141
        grad_sum = dgl.distributed.DistTensor(g, (g.number_of_nodes(),), F.float32,
                                              'emb1_sum', policy)
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
        assert np.all(F.asnumpy(grad_sum[nids]) == np.ones((len(nids), 1)))
        assert np.all(F.asnumpy(grad_sum[rest]) == np.zeros((len(rest), 1)))

        emb = SparseNodeEmbedding(g, 'emb2', new_shape, emb_init)
        optimizer = SparseAdagrad([emb], lr=lr)
        with F.record_grad():
            feats1 = emb(nids)
            feats2 = emb(nids)
            feats = F.cat([feats1, feats2], 0)
            assert np.all(F.asnumpy(feats) == np.zeros((len(nids) * 2, 1)))
            loss = F.sum(feats + 1, 0)
        loss.backward()
        optimizer.step()
        feats = emb(nids)
        assert_almost_equal(F.asnumpy(feats), np.ones((len(nids), 1)) * math.sqrt(2) * -lr)
        rest = np.setdiff1d(np.arange(g.number_of_nodes()), F.asnumpy(nids))
        feats1 = emb(rest)
        assert np.all(F.asnumpy(feats1) == np.zeros((len(rest), 1)))
    except NotImplementedError as e:
        pass

163
164
165
166
167
168
169
170
171
172
173
174
175
176
    # Test write data
    new_feats = F.ones((len(nids), 2), F.int32, F.cpu())
    g.ndata['test1'][nids] = new_feats
    feats = g.ndata['test1'][nids]
    assert np.all(F.asnumpy(feats) == 1)

    # Test metadata operations.
    assert len(g.ndata['features']) == g.number_of_nodes()
    assert g.ndata['features'].shape == (g.number_of_nodes(), 1)
    assert g.ndata['features'].dtype == F.int64
    assert g.node_attr_schemes()['features'].dtype == F.int64
    assert g.node_attr_schemes()['test1'].dtype == F.int32
    assert g.node_attr_schemes()['features'].shape == (1,)

177
178
    selected_nodes = np.random.randint(0, 100, size=g.number_of_nodes()) > 30
    # Test node split
179
    nodes = node_split(selected_nodes, g.get_partition_book())
180
181
182
183
184
185
    nodes = F.asnumpy(nodes)
    # We only have one partition, so the local nodes are basically all nodes in the graph.
    local_nids = np.arange(g.number_of_nodes())
    for n in nodes:
        assert n in local_nids

186
187
    print('end')

188
def check_server_client(shared_mem):
189
    prepare_dist()
190
191
192
193
    g = create_random_graph(10000)

    # Partition the graph
    num_parts = 1
194
    graph_name = 'dist_graph_test_2'
195
196
    g.ndata['features'] = F.unsqueeze(F.arange(0, g.number_of_nodes()), 1)
    g.edata['features'] = F.unsqueeze(F.arange(0, g.number_of_edges()), 1)
197
    partition_graph(g, graph_name, num_parts, '/tmp/dist_graph')
198
199
200
201

    # let's just test on one partition for now.
    # We cannot run multiple servers and clients on the same machine.
    serv_ps = []
202
    ctx = mp.get_context('spawn')
203
    for serv_id in range(1):
204
        p = ctx.Process(target=run_server, args=(graph_name, serv_id, 1, shared_mem))
205
206
207
208
209
210
        serv_ps.append(p)
        p.start()

    cli_ps = []
    for cli_id in range(1):
        print('start client', cli_id)
211
        p = ctx.Process(target=run_client, args=(graph_name, cli_id, g.number_of_nodes(),
212
                                                 g.number_of_edges()))
213
214
215
216
217
        p.start()
        cli_ps.append(p)

    for p in cli_ps:
        p.join()
218
219
220
221

    for p in serv_ps:
        p.join()

222
223
    print('clients have terminated')

224
225
@unittest.skipIf(dgl.backend.backend_name == "tensorflow", reason="TF doesn't support some of operations in DistGraph")
def test_server_client():
226
    os.environ['DGL_DIST_MODE'] = 'distributed'
227
228
229
    check_server_client(True)
    check_server_client(False)

230
231
232
233
234
235
236
237
238
239
240
241
242
243
@unittest.skipIf(dgl.backend.backend_name == "tensorflow", reason="TF doesn't support some of operations in DistGraph")
def test_standalone():
    os.environ['DGL_DIST_MODE'] = 'standalone'
    g = create_random_graph(10000)
    # Partition the graph
    num_parts = 1
    graph_name = 'dist_graph_test_3'
    g.ndata['features'] = F.unsqueeze(F.arange(0, g.number_of_nodes()), 1)
    g.edata['features'] = F.unsqueeze(F.arange(0, g.number_of_edges()), 1)
    partition_graph(g, graph_name, num_parts, '/tmp/dist_graph')
    dist_g = DistGraph("kv_ip_config.txt", graph_name,
                  conf_file='/tmp/dist_graph/{}.json'.format(graph_name))
    check_dist_graph(dist_g, g.number_of_nodes(), g.number_of_edges())

244
def test_split():
245
    prepare_dist()
246
247
248
    g = create_random_graph(10000)
    num_parts = 4
    num_hops = 2
249
    partition_graph(g, 'dist_graph_test', num_parts, '/tmp/dist_graph', num_hops=num_hops, part_method='metis')
250
251
252
253
254
255

    node_mask = np.random.randint(0, 100, size=g.number_of_nodes()) > 30
    edge_mask = np.random.randint(0, 100, size=g.number_of_edges()) > 30
    selected_nodes = np.nonzero(node_mask)[0]
    selected_edges = np.nonzero(edge_mask)[0]
    for i in range(num_parts):
256
        dgl.distributed.set_num_client(num_parts)
257
        part_g, node_feats, edge_feats, gpb, _ = load_partition('/tmp/dist_graph/dist_graph_test.json', i)
Da Zheng's avatar
Da Zheng committed
258
        local_nids = F.nonzero_1d(part_g.ndata['inner_node'])
259
260
261
262
263
264
265
266
        local_nids = F.gather_row(part_g.ndata[dgl.NID], local_nids)
        nodes1 = np.intersect1d(selected_nodes, F.asnumpy(local_nids))
        nodes2 = node_split(node_mask, gpb, i)
        assert np.all(np.sort(nodes1) == np.sort(F.asnumpy(nodes2)))
        local_nids = F.asnumpy(local_nids)
        for n in nodes1:
            assert n in local_nids

267
268
269
270
271
272
273
        dgl.distributed.set_num_client(num_parts * 2)
        nodes3 = node_split(node_mask, gpb, i * 2)
        nodes4 = node_split(node_mask, gpb, i * 2 + 1)
        nodes5 = F.cat([nodes3, nodes4], 0)
        assert np.all(np.sort(nodes1) == np.sort(F.asnumpy(nodes5)))

        dgl.distributed.set_num_client(num_parts)
Da Zheng's avatar
Da Zheng committed
274
        local_eids = F.nonzero_1d(part_g.edata['inner_edge'])
275
276
277
278
279
280
281
282
        local_eids = F.gather_row(part_g.edata[dgl.EID], local_eids)
        edges1 = np.intersect1d(selected_edges, F.asnumpy(local_eids))
        edges2 = edge_split(edge_mask, gpb, i)
        assert np.all(np.sort(edges1) == np.sort(F.asnumpy(edges2)))
        local_eids = F.asnumpy(local_eids)
        for e in edges1:
            assert e in local_eids

283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
        dgl.distributed.set_num_client(num_parts * 2)
        edges3 = edge_split(edge_mask, gpb, i * 2)
        edges4 = edge_split(edge_mask, gpb, i * 2 + 1)
        edges5 = F.cat([edges3, edges4], 0)
        assert np.all(np.sort(edges1) == np.sort(F.asnumpy(edges5)))

def test_split_even():
    prepare_dist()
    g = create_random_graph(10000)
    num_parts = 4
    num_hops = 2
    partition_graph(g, 'dist_graph_test', num_parts, '/tmp/dist_graph', num_hops=num_hops, part_method='metis')

    node_mask = np.random.randint(0, 100, size=g.number_of_nodes()) > 30
    edge_mask = np.random.randint(0, 100, size=g.number_of_edges()) > 30
    selected_nodes = np.nonzero(node_mask)[0]
    selected_edges = np.nonzero(edge_mask)[0]
    all_nodes1 = []
    all_nodes2 = []
    all_edges1 = []
    all_edges2 = []
    for i in range(num_parts):
        dgl.distributed.set_num_client(num_parts)
306
        part_g, node_feats, edge_feats, gpb, _ = load_partition('/tmp/dist_graph/dist_graph_test.json', i)
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
        local_nids = F.nonzero_1d(part_g.ndata['inner_node'])
        local_nids = F.gather_row(part_g.ndata[dgl.NID], local_nids)
        nodes = node_split(node_mask, gpb, i, force_even=True)
        all_nodes1.append(nodes)
        subset = np.intersect1d(F.asnumpy(nodes), F.asnumpy(local_nids))
        print('part {} get {} nodes and {} are in the partition'.format(i, len(nodes), len(subset)))

        dgl.distributed.set_num_client(num_parts * 2)
        nodes1 = node_split(node_mask, gpb, i * 2, force_even=True)
        nodes2 = node_split(node_mask, gpb, i * 2 + 1, force_even=True)
        nodes3 = F.cat([nodes1, nodes2], 0)
        all_nodes2.append(nodes3)
        subset = np.intersect1d(F.asnumpy(nodes), F.asnumpy(nodes3))
        print('intersection has', len(subset))

        dgl.distributed.set_num_client(num_parts)
        local_eids = F.nonzero_1d(part_g.edata['inner_edge'])
        local_eids = F.gather_row(part_g.edata[dgl.EID], local_eids)
        edges = edge_split(edge_mask, gpb, i, force_even=True)
        all_edges1.append(edges)
        subset = np.intersect1d(F.asnumpy(edges), F.asnumpy(local_eids))
        print('part {} get {} edges and {} are in the partition'.format(i, len(edges), len(subset)))

        dgl.distributed.set_num_client(num_parts * 2)
        edges1 = edge_split(edge_mask, gpb, i * 2, force_even=True)
        edges2 = edge_split(edge_mask, gpb, i * 2 + 1, force_even=True)
        edges3 = F.cat([edges1, edges2], 0)
        all_edges2.append(edges3)
        subset = np.intersect1d(F.asnumpy(edges), F.asnumpy(edges3))
        print('intersection has', len(subset))
    all_nodes1 = F.cat(all_nodes1, 0)
    all_edges1 = F.cat(all_edges1, 0)
    all_nodes2 = F.cat(all_nodes2, 0)
    all_edges2 = F.cat(all_edges2, 0)
    all_nodes = np.nonzero(node_mask)[0]
    all_edges = np.nonzero(edge_mask)[0]
    assert np.all(all_nodes == F.asnumpy(all_nodes1))
    assert np.all(all_edges == F.asnumpy(all_edges1))
    assert np.all(all_nodes == F.asnumpy(all_nodes2))
    assert np.all(all_edges == F.asnumpy(all_edges2))

348
349
def prepare_dist():
    ip_config = open("kv_ip_config.txt", "w")
350
351
    ip_addr = get_local_usable_addr()
    ip_config.write('%s 1\n' % ip_addr)
352
353
    ip_config.close()

354
if __name__ == '__main__':
Da Zheng's avatar
Da Zheng committed
355
    os.makedirs('/tmp/dist_graph', exist_ok=True)
356
357
    test_split()
    test_split_even()
Da Zheng's avatar
Da Zheng committed
358
    test_server_client()
359
    test_standalone()