entity_classify_dist.py 25.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
"""
Modeling Relational Data with Graph Convolutional Networks
Paper: https://arxiv.org/abs/1703.06103
Code: https://github.com/tkipf/relational-gcn
Difference compared to tkipf/relation-gcn
* l2norm applied to all weights
* remove nodes that won't be touched
"""
import argparse
import itertools
import numpy as np
import time
13
import os, gc
14
15
16
17
18
19
20
21
22
23
os.environ['DGLBACKEND']='pytorch'

import torch as th
import torch.nn as nn
import torch.nn.functional as F
import torch.multiprocessing as mp
from torch.multiprocessing import Queue
from torch.nn.parallel import DistributedDataParallel
from torch.utils.data import DataLoader
import dgl
24
from dgl import nn as dglnn
25
26
27
28
29
30
31
32
from dgl import DGLGraph
from dgl.distributed import DistDataLoader
from functools import partial

import tqdm

from ogb.nodeproppred import DglNodePropPredDataset

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

class RelGraphConvLayer(nn.Module):
    r"""Relational graph convolution layer.
    Parameters
    ----------
    in_feat : int
        Input feature size.
    out_feat : int
        Output feature size.
    rel_names : list[str]
        Relation names.
    num_bases : int, optional
        Number of bases. If is none, use number of relations. Default: None.
    weight : bool, optional
        True if a linear layer is applied after message passing. Default: True
    bias : bool, optional
        True if bias is added. Default: True
    activation : callable, optional
        Activation function. Default: None
    self_loop : bool, optional
        True to include self loop message. Default: False
    dropout : float, optional
        Dropout rate. Default: 0.0
    """
    def __init__(self,
                 in_feat,
                 out_feat,
                 rel_names,
                 num_bases,
                 *,
                 weight=True,
                 bias=True,
                 activation=None,
                 self_loop=False,
                 dropout=0.0):
        super(RelGraphConvLayer, self).__init__()
        self.in_feat = in_feat
        self.out_feat = out_feat
        self.rel_names = rel_names
        self.num_bases = num_bases
        self.bias = bias
        self.activation = activation
        self.self_loop = self_loop

        self.conv = dglnn.HeteroGraphConv({
                rel : dglnn.GraphConv(in_feat, out_feat, norm='right', weight=False, bias=False)
                for rel in rel_names
            })

        self.use_weight = weight
        self.use_basis = num_bases < len(self.rel_names) and weight
        if self.use_weight:
            if self.use_basis:
                self.basis = dglnn.WeightBasis((in_feat, out_feat), num_bases, len(self.rel_names))
            else:
                self.weight = nn.Parameter(th.Tensor(len(self.rel_names), in_feat, out_feat))
                nn.init.xavier_uniform_(self.weight, gain=nn.init.calculate_gain('relu'))

        # bias
        if bias:
            self.h_bias = nn.Parameter(th.Tensor(out_feat))
            nn.init.zeros_(self.h_bias)

        # weight for self loop
        if self.self_loop:
            self.loop_weight = nn.Parameter(th.Tensor(in_feat, out_feat))
            nn.init.xavier_uniform_(self.loop_weight,
                                    gain=nn.init.calculate_gain('relu'))

        self.dropout = nn.Dropout(dropout)

    def forward(self, g, inputs):
        """Forward computation
        Parameters
        ----------
        g : DGLHeteroGraph
            Input graph.
        inputs : dict[str, torch.Tensor]
            Node feature for each node type.
        Returns
        -------
        dict[str, torch.Tensor]
            New node features for each node type.
        """
        g = g.local_var()
        if self.use_weight:
            weight = self.basis() if self.use_basis else self.weight
            wdict = {self.rel_names[i] : {'weight' : w.squeeze(0)}
                     for i, w in enumerate(th.split(weight, 1, dim=0))}
        else:
            wdict = {}

        if g.is_block:
            inputs_src = inputs
            inputs_dst = {k: v[:g.number_of_dst_nodes(k)] for k, v in inputs.items()}
        else:
            inputs_src = inputs_dst = inputs

        hs = self.conv(g, inputs, mod_kwargs=wdict)

        def _apply(ntype, h):
            if self.self_loop:
                h = h + th.matmul(inputs_dst[ntype], self.loop_weight)
            if self.bias:
                h = h + self.h_bias
            if self.activation:
                h = self.activation(h)
            return self.dropout(h)
        return {ntype : _apply(ntype, h) for ntype, h in hs.items()}

143
144
145
146
147
148
149
150
151
152
153
154
class EntityClassify(nn.Module):
    """ Entity classification class for RGCN
    Parameters
    ----------
    device : int
        Device to run the layer.
    num_nodes : int
        Number of nodes.
    h_dim : int
        Hidden dim size.
    out_dim : int
        Output dim size.
155
156
    rel_names : list of str
        A list of relation names.
157
158
159
160
161
162
163
164
165
166
167
168
169
    num_bases : int
        Number of bases. If is none, use number of relations.
    num_hidden_layers : int
        Number of hidden RelGraphConv Layer
    dropout : float
        Dropout
    use_self_loop : bool
        Use self loop if True, default False.
    """
    def __init__(self,
                 device,
                 h_dim,
                 out_dim,
170
                 rel_names,
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
                 num_bases=None,
                 num_hidden_layers=1,
                 dropout=0,
                 use_self_loop=False,
                 layer_norm=False):
        super(EntityClassify, self).__init__()
        self.device = device
        self.h_dim = h_dim
        self.out_dim = out_dim
        self.num_bases = None if num_bases < 0 else num_bases
        self.num_hidden_layers = num_hidden_layers
        self.dropout = dropout
        self.use_self_loop = use_self_loop
        self.layer_norm = layer_norm

        self.layers = nn.ModuleList()
        # i2h
188
189
        self.layers.append(RelGraphConvLayer(
            self.h_dim, self.h_dim, rel_names,
190
            self.num_bases, activation=F.relu, self_loop=self.use_self_loop,
191
            dropout=self.dropout))
192
193
        # h2h
        for idx in range(self.num_hidden_layers):
194
195
            self.layers.append(RelGraphConvLayer(
                self.h_dim, self.h_dim, rel_names,
196
                self.num_bases, activation=F.relu, self_loop=self.use_self_loop,
197
                dropout=self.dropout))
198
        # h2o
199
200
201
        self.layers.append(RelGraphConvLayer(
            self.h_dim, self.out_dim, rel_names,
            self.num_bases, activation=None, self_loop=self.use_self_loop))
202
203
204
205
206
207
208
209

    def forward(self, blocks, feats, norm=None):
        if blocks is None:
            # full graph training
            blocks = [self.g] * len(self.layers)
        h = feats
        for layer, block in zip(self.layers, blocks):
            block = block.to(self.device)
210
            h = layer(block, h)
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
        return h

def init_emb(shape, dtype):
    arr = th.zeros(shape, dtype=dtype)
    nn.init.uniform_(arr, -1.0, 1.0)
    return arr

class DistEmbedLayer(nn.Module):
    r"""Embedding layer for featureless heterograph.
    Parameters
    ----------
    dev_id : int
        Device to run the layer.
    g : DistGraph
        training graph
    embed_size : int
        Output embed size
    sparse_emb: bool
        Whether to use sparse embedding
        Default: False
    dgl_sparse_emb: bool
        Whether to use DGL sparse embedding
        Default: False
    embed_name : str, optional
        Embed name
    """
    def __init__(self,
                 dev_id,
                 g,
                 embed_size,
                 sparse_emb=False,
                 dgl_sparse_emb=False,
243
                 feat_name='feat',
244
245
246
247
248
                 embed_name='node_emb'):
        super(DistEmbedLayer, self).__init__()
        self.dev_id = dev_id
        self.embed_size = embed_size
        self.embed_name = embed_name
249
        self.feat_name = feat_name
250
        self.sparse_emb = sparse_emb
251
252
253
254
255
256
257
258
259
        self.g = g
        self.ntype_id_map = {g.get_ntype_id(ntype):ntype for ntype in g.ntypes}

        self.node_projs = nn.ModuleDict()
        for ntype in g.ntypes:
            if feat_name in g.nodes[ntype].data:
                self.node_projs[ntype] = nn.Linear(g.nodes[ntype].data[feat_name].shape[1], embed_size)
                nn.init.xavier_uniform_(self.node_projs[ntype].weight)
                print('node {} has data {}'.format(ntype, feat_name))
260
261
        if sparse_emb:
            if dgl_sparse_emb:
262
263
264
265
266
                self.node_embeds = {}
                for ntype in g.ntypes:
                    # We only create embeddings for nodes without node features.
                    if feat_name not in g.nodes[ntype].data:
                        part_policy = g.get_node_partition_policy(ntype)
267
                        self.node_embeds[ntype] = dgl.distributed.DistEmbedding(g.number_of_nodes(ntype),
268
269
270
271
                                self.embed_size,
                                embed_name + '_' + ntype,
                                init_emb,
                                part_policy)
272
            else:
273
274
275
276
277
278
                self.node_embeds = nn.ModuleDict()
                for ntype in g.ntypes:
                    # We only create embeddings for nodes without node features.
                    if feat_name not in g.nodes[ntype].data:
                        self.node_embeds[ntype] = th.nn.Embedding(g.number_of_nodes(ntype), self.embed_size, sparse=self.sparse_emb)
                        nn.init.uniform_(self.node_embeds[ntype].weight, -1.0, 1.0)
279
        else:
280
281
282
283
284
285
286
            self.node_embeds = nn.ModuleDict()
            for ntype in g.ntypes:
                # We only create embeddings for nodes without node features.
                if feat_name not in g.nodes[ntype].data:
                    self.node_embeds[ntype] = th.nn.Embedding(g.number_of_nodes(ntype), self.embed_size)
                    nn.init.uniform_(self.node_embeds[ntype].weight, -1.0, 1.0)

287
    def forward(self, node_ids):
288
289
290
        """Forward computation
        Parameters
        ----------
291
        node_ids : dict of Tensor
292
293
294
295
296
297
            node ids to generate embedding for.
        Returns
        -------
        tensor
            embeddings as the input of the next layer
        """
298
299
        embeds = {}
        for ntype in node_ids:
300
            if self.feat_name in self.g.nodes[ntype].data:
301
                embeds[ntype] = self.node_projs[ntype](self.g.nodes[ntype].data[self.feat_name][node_ids[ntype]].to(self.dev_id))
302
            else:
303
                embeds[ntype] = self.node_embeds[ntype](node_ids[ntype]).to(self.dev_id)
304
305
306
307
308
309
310
311
312
        return embeds

def compute_acc(results, labels):
    """
    Compute the accuracy of prediction given the labels.
    """
    labels = labels.long()
    return (results == labels).float().sum() / len(results)

313
def evaluate(g, model, embed_layer, labels, eval_loader, test_loader, all_val_nid, all_test_nid):
314
315
316
317
318
319
320
321
    model.eval()
    embed_layer.eval()
    eval_logits = []
    eval_seeds = []

    global_results = dgl.distributed.DistTensor(labels.shape, th.long, 'results', persistent=True)

    with th.no_grad():
322
        th.cuda.empty_cache()
323
        for sample_data in tqdm.tqdm(eval_loader):
324
325
326
            input_nodes, seeds, blocks = sample_data
            seeds = seeds['paper']
            feats = embed_layer(input_nodes)
327
            logits = model(blocks, feats)
328
329
            assert len(logits) == 1
            logits = logits['paper']
330
            eval_logits.append(logits.cpu().detach())
331
            assert np.all(seeds.numpy() < g.number_of_nodes('paper'))
332
333
334
335
336
337
338
339
            eval_seeds.append(seeds.cpu().detach())
    eval_logits = th.cat(eval_logits)
    eval_seeds = th.cat(eval_seeds)
    global_results[eval_seeds] = eval_logits.argmax(dim=1)

    test_logits = []
    test_seeds = []
    with th.no_grad():
340
        th.cuda.empty_cache()
341
        for sample_data in tqdm.tqdm(test_loader):
342
343
344
            input_nodes, seeds, blocks = sample_data
            seeds = seeds['paper']
            feats = embed_layer(input_nodes)
345
            logits = model(blocks, feats)
346
347
            assert len(logits) == 1
            logits = logits['paper']
348
            test_logits.append(logits.cpu().detach())
349
            assert np.all(seeds.numpy() < g.number_of_nodes('paper'))
350
351
352
353
354
355
356
            test_seeds.append(seeds.cpu().detach())
    test_logits = th.cat(test_logits)
    test_seeds = th.cat(test_seeds)
    global_results[test_seeds] = test_logits.argmax(dim=1)

    g.barrier()
    if g.rank() == 0:
357
358
        return compute_acc(global_results[all_val_nid], labels[all_val_nid]), \
            compute_acc(global_results[all_test_nid], labels[all_test_nid])
359
360
361
362
    else:
        return -1, -1

def run(args, device, data):
363
    g, num_classes, train_nid, val_nid, test_nid, labels, all_val_nid, all_test_nid = data
364
365
366

    fanouts = [int(fanout) for fanout in args.fanout.split(',')]
    val_fanouts = [int(fanout) for fanout in args.validation_fanout.split(',')]
367
368
369
370
371
372

    sampler = dgl.dataloading.MultiLayerNeighborSampler(fanouts)
    dataloader = dgl.dataloading.NodeDataLoader(
        g,
        {'paper': train_nid},
        sampler,
373
374
375
376
        batch_size=args.batch_size,
        shuffle=True,
        drop_last=False)

377
378
379
380
381
    valid_sampler = dgl.dataloading.MultiLayerNeighborSampler(val_fanouts)
    valid_dataloader = dgl.dataloading.NodeDataLoader(
        g,
        {'paper': val_nid},
        valid_sampler,
382
383
384
385
        batch_size=args.batch_size,
        shuffle=False,
        drop_last=False)

386
387
388
389
390
    test_sampler = dgl.dataloading.MultiLayerNeighborSampler(val_fanouts)
    test_dataloader = dgl.dataloading.NodeDataLoader(
        g,
        {'paper': test_nid},
        test_sampler,
391
        batch_size=args.eval_batch_size,
392
393
394
395
396
397
398
        shuffle=False,
        drop_last=False)

    embed_layer = DistEmbedLayer(device,
                                 g,
                                 args.n_hidden,
                                 sparse_emb=args.sparse_embedding,
399
400
                                 dgl_sparse_emb=args.dgl_sparse,
                                 feat_name='feat')
401
402
403
404

    model = EntityClassify(device,
                           args.n_hidden,
                           num_classes,
405
                           g.etypes,
406
407
408
409
410
411
                           num_bases=args.n_bases,
                           num_hidden_layers=args.n_layers-2,
                           dropout=args.dropout,
                           use_self_loop=args.use_self_loop,
                           layer_norm=args.layer_norm)
    model = model.to(device)
412

413
    if not args.standalone:
414
415
416
417
418
419
420
421
422
423
424
425
426
427
        if args.num_gpus == -1:
            model = DistributedDataParallel(model)
            # If there are dense parameters in the embedding layer
            # or we use Pytorch saprse embeddings.
            if len(embed_layer.node_projs) > 0 or not args.dgl_sparse:
                embed_layer = DistributedDataParallel(embed_layer)
        else:
            dev_id = g.rank() % args.num_gpus
            model = DistributedDataParallel(model, device_ids=[dev_id], output_device=dev_id)
            # If there are dense parameters in the embedding layer
            # or we use Pytorch saprse embeddings.
            if len(embed_layer.node_projs) > 0 or not args.dgl_sparse:
                embed_layer = embed_layer.to(device)
                embed_layer = DistributedDataParallel(embed_layer, device_ids=[dev_id], output_device=dev_id)
428
429

    if args.sparse_embedding:
430
        if args.dgl_sparse and args.standalone:
431
            emb_optimizer = dgl.distributed.optim.SparseAdam(list(embed_layer.node_embeds.values()), lr=args.sparse_lr)
432
433
            print('optimize DGL sparse embedding:', embed_layer.node_embeds.keys())
        elif args.dgl_sparse:
434
            emb_optimizer = dgl.distributed.optim.SparseAdam(list(embed_layer.module.node_embeds.values()), lr=args.sparse_lr)
435
436
            print('optimize DGL sparse embedding:', embed_layer.module.node_embeds.keys())
        elif args.standalone:
437
            emb_optimizer = th.optim.SparseAdam(list(embed_layer.node_embeds.parameters()), lr=args.sparse_lr)
438
            print('optimize Pytorch sparse embedding:', embed_layer.node_embeds)
439
        else:
440
            emb_optimizer = th.optim.SparseAdam(list(embed_layer.module.node_embeds.parameters()), lr=args.sparse_lr)
441
            print('optimize Pytorch sparse embedding:', embed_layer.module.node_embeds)
442

443
        dense_params = list(model.parameters())
444
445
446
447
448
449
        if args.standalone:
            dense_params += list(embed_layer.node_projs.parameters())
            print('optimize dense projection:', embed_layer.node_projs)
        else:
            dense_params += list(embed_layer.module.node_projs.parameters())
            print('optimize dense projection:', embed_layer.module.node_projs)
450
        optimizer = th.optim.Adam(dense_params, lr=args.lr, weight_decay=args.l2norm)
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
    else:
        all_params = list(model.parameters()) + list(embed_layer.parameters())
        optimizer = th.optim.Adam(all_params, lr=args.lr, weight_decay=args.l2norm)

    # training loop
    print("start training...")
    for epoch in range(args.n_epochs):
        tic = time.time()

        sample_time = 0
        copy_time = 0
        forward_time = 0
        backward_time = 0
        update_time = 0
        number_train = 0
466
        number_input = 0
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481

        step_time = []
        iter_t = []
        sample_t = []
        feat_copy_t = []
        forward_t = []
        backward_t = []
        update_t = []
        iter_tput = []

        start = time.time()
        # Loop over the dataloader to sample the computation dependency graph as a list of
        # blocks.
        step_time = []
        for step, sample_data in enumerate(dataloader):
482
483
            input_nodes, seeds, blocks = sample_data
            seeds = seeds['paper']
484
            number_train += seeds.shape[0]
485
            number_input += np.sum([blocks[0].num_src_nodes(ntype) for ntype in blocks[0].ntypes])
486
487
488
489
            tic_step = time.time()
            sample_time += tic_step - start
            sample_t.append(tic_step - start)

490
            feats = embed_layer(input_nodes)
491
            label = labels[seeds].to(device)
492
493
494
495
496
            copy_time = time.time()
            feat_copy_t.append(copy_time - tic_step)

            # forward
            logits = model(blocks, feats)
497
498
            assert len(logits) == 1
            logits = logits['paper']
499
500
501
502
503
            loss = F.cross_entropy(logits, label)
            forward_end = time.time()

            # backward
            optimizer.zero_grad()
504
            if args.sparse_embedding:
505
506
507
508
509
510
                emb_optimizer.zero_grad()
            loss.backward()
            compute_end = time.time()
            forward_t.append(forward_end - copy_time)
            backward_t.append(compute_end - forward_end)

511
512
513
514
            # Update model parameters
            optimizer.step()
            if args.sparse_embedding:
                emb_optimizer.step()
515
516
517
518
            update_t.append(time.time() - compute_end)
            step_t = time.time() - start
            step_time.append(step_t)

519
520
            train_acc = th.sum(logits.argmax(dim=1) == label).item() / len(seeds)

521
            if step % args.log_every == 0:
522
                print('[{}] Epoch {:05d} | Step {:05d} | Train acc {:.4f} | Loss {:.4f} | time {:.3f} s' \
523
                        '| sample {:.3f} | copy {:.3f} | forward {:.3f} | backward {:.3f} | update {:.3f}'.format(
524
                    g.rank(), epoch, step, train_acc, loss.item(), np.sum(step_time[-args.log_every:]),
525
526
527
528
                    np.sum(sample_t[-args.log_every:]), np.sum(feat_copy_t[-args.log_every:]), np.sum(forward_t[-args.log_every:]),
                    np.sum(backward_t[-args.log_every:]), np.sum(update_t[-args.log_every:])))
            start = time.time()

529
        gc.collect()
530
531
        print('[{}]Epoch Time(s): {:.4f}, sample: {:.4f}, data copy: {:.4f}, forward: {:.4f}, backward: {:.4f}, update: {:.4f}, #train: {}, #input: {}'.format(
            g.rank(), np.sum(step_time), np.sum(sample_t), np.sum(feat_copy_t), np.sum(forward_t), np.sum(backward_t), np.sum(update_t), number_train, number_input))
532
533
534
535
536
        epoch += 1

        start = time.time()
        g.barrier()
        val_acc, test_acc = evaluate(g, model, embed_layer, labels,
537
            valid_dataloader, test_dataloader, all_val_nid, all_test_nid)
538
539
540
541
542
        if val_acc >= 0:
            print('Val Acc {:.4f}, Test Acc {:.4f}, time: {:.4f}'.format(val_acc, test_acc,
                                                                         time.time() - start))

def main(args):
543
    dgl.distributed.initialize(args.ip_config)
544
545
546
547
548
549
550
    if not args.standalone:
        th.distributed.init_process_group(backend='gloo')

    g = dgl.distributed.DistGraph(args.graph_name, part_config=args.conf_path)
    print('rank:', g.rank())

    pb = g.get_partition_book()
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
    if 'trainer_id' in g.nodes['paper'].data:
        train_nid = dgl.distributed.node_split(g.nodes['paper'].data['train_mask'],
                                               pb, ntype='paper', force_even=True,
                                               node_trainer_ids=g.nodes['paper'].data['trainer_id'])
        val_nid = dgl.distributed.node_split(g.nodes['paper'].data['val_mask'],
                                             pb, ntype='paper', force_even=True,
                                             node_trainer_ids=g.nodes['paper'].data['trainer_id'])
        test_nid = dgl.distributed.node_split(g.nodes['paper'].data['test_mask'],
                                              pb, ntype='paper', force_even=True,
                                              node_trainer_ids=g.nodes['paper'].data['trainer_id'])
    else:
        train_nid = dgl.distributed.node_split(g.nodes['paper'].data['train_mask'],
                                               pb, ntype='paper', force_even=True)
        val_nid = dgl.distributed.node_split(g.nodes['paper'].data['val_mask'],
                                             pb, ntype='paper', force_even=True)
        test_nid = dgl.distributed.node_split(g.nodes['paper'].data['test_mask'],
                                              pb, ntype='paper', force_even=True)
568
    local_nid = pb.partid2nids(pb.partid, 'paper').detach().numpy()
569
570
571
572
    print('part {}, train: {} (local: {}), val: {} (local: {}), test: {} (local: {})'.format(
          g.rank(), len(train_nid), len(np.intersect1d(train_nid.numpy(), local_nid)),
          len(val_nid), len(np.intersect1d(val_nid.numpy(), local_nid)),
          len(test_nid), len(np.intersect1d(test_nid.numpy(), local_nid))))
573
574
575
    if args.num_gpus == -1:
        device = th.device('cpu')
    else:
576
        device = th.device('cuda:'+str(args.local_rank))
577
578
579
    labels = g.nodes['paper'].data['labels'][np.arange(g.number_of_nodes('paper'))]
    all_val_nid = th.LongTensor(np.nonzero(g.nodes['paper'].data['val_mask'][np.arange(g.number_of_nodes('paper'))])).squeeze()
    all_test_nid = th.LongTensor(np.nonzero(g.nodes['paper'].data['test_mask'][np.arange(g.number_of_nodes('paper'))])).squeeze()
580
581
582
    n_classes = len(th.unique(labels[labels >= 0]))
    print('#classes:', n_classes)

583
    run(args, device, (g, n_classes, train_nid, val_nid, test_nid, labels, all_val_nid, all_test_nid))
584
585
586
587
588
589
590
591
592
593

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='RGCN')
    # distributed training related
    parser.add_argument('--graph-name', type=str, help='graph name')
    parser.add_argument('--id', type=int, help='the partition id')
    parser.add_argument('--ip-config', type=str, help='The file for IP configuration')
    parser.add_argument('--conf-path', type=str, help='The path to the partition config file')

    # rgcn related
594
    parser.add_argument('--num_gpus', type=int, default=-1,
595
                        help="the number of GPU device. Use -1 for CPU training")
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
    parser.add_argument("--dropout", type=float, default=0,
            help="dropout probability")
    parser.add_argument("--n-hidden", type=int, default=16,
            help="number of hidden units")
    parser.add_argument("--lr", type=float, default=1e-2,
            help="learning rate")
    parser.add_argument("--sparse-lr", type=float, default=1e-2,
            help="sparse lr rate")
    parser.add_argument("--n-bases", type=int, default=-1,
            help="number of filter weight matrices, default: -1 [use all]")
    parser.add_argument("--n-layers", type=int, default=2,
            help="number of propagation rounds")
    parser.add_argument("-e", "--n-epochs", type=int, default=50,
            help="number of training epochs")
    parser.add_argument("-d", "--dataset", type=str, required=True,
            help="dataset to use")
    parser.add_argument("--l2norm", type=float, default=0,
            help="l2 norm coef")
    parser.add_argument("--relabel", default=False, action='store_true',
            help="remove untouched nodes and relabel")
    parser.add_argument("--fanout", type=str, default="4, 4",
            help="Fan-out of neighbor sampling.")
    parser.add_argument("--validation-fanout", type=str, default=None,
            help="Fan-out of neighbor sampling during validation.")
    parser.add_argument("--use-self-loop", default=False, action='store_true',
            help="include self feature as a special relation")
    parser.add_argument("--batch-size", type=int, default=100,
            help="Mini-batch size. ")
    parser.add_argument("--eval-batch-size", type=int, default=128,
            help="Mini-batch size. ")
    parser.add_argument('--log-every', type=int, default=20)
    parser.add_argument("--low-mem", default=False, action='store_true',
            help="Whether use low mem RelGraphCov")
    parser.add_argument("--sparse-embedding", action='store_true',
            help='Use sparse embedding for node embeddings.')
    parser.add_argument("--dgl-sparse", action='store_true',
            help='Whether to use DGL sparse embedding')
    parser.add_argument('--layer-norm', default=False, action='store_true',
            help='Use layer norm')
    parser.add_argument('--local_rank', type=int, help='get rank of the process')
    parser.add_argument('--standalone', action='store_true', help='run in the standalone mode')
    args = parser.parse_args()

    # if validation_fanout is None, set it with args.fanout
    if args.validation_fanout is None:
        args.validation_fanout = args.fanout
    print(args)
    main(args)