"vscode:/vscode.git/clone" did not exist on "9ad7b6a1a12f8cd6b715be9f0ca85603e0a2b002"
entity_classify_dist.py 24.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
"""
Modeling Relational Data with Graph Convolutional Networks
Paper: https://arxiv.org/abs/1703.06103
Code: https://github.com/tkipf/relational-gcn
Difference compared to tkipf/relation-gcn
* l2norm applied to all weights
* remove nodes that won't be touched
"""
import argparse
import itertools
import numpy as np
import time
import os
os.environ['DGLBACKEND']='pytorch'

import torch as th
import torch.nn as nn
import torch.nn.functional as F
import torch.multiprocessing as mp
from torch.multiprocessing import Queue
from torch.nn.parallel import DistributedDataParallel
from torch.utils.data import DataLoader
import dgl
from dgl import DGLGraph
from dgl.distributed import DistDataLoader
from functools import partial

from dgl.nn import RelGraphConv
import tqdm

from ogb.nodeproppred import DglNodePropPredDataset

class EntityClassify(nn.Module):
    """ Entity classification class for RGCN
    Parameters
    ----------
    device : int
        Device to run the layer.
    num_nodes : int
        Number of nodes.
    h_dim : int
        Hidden dim size.
    out_dim : int
        Output dim size.
    num_rels : int
        Numer of relation types.
    num_bases : int
        Number of bases. If is none, use number of relations.
    num_hidden_layers : int
        Number of hidden RelGraphConv Layer
    dropout : float
        Dropout
    use_self_loop : bool
        Use self loop if True, default False.
    low_mem : bool
        True to use low memory implementation of relation message passing function
        trade speed with memory consumption
    """
    def __init__(self,
                 device,
                 h_dim,
                 out_dim,
                 num_rels,
                 num_bases=None,
                 num_hidden_layers=1,
                 dropout=0,
                 use_self_loop=False,
                 low_mem=False,
                 layer_norm=False):
        super(EntityClassify, self).__init__()
        self.device = device
        self.h_dim = h_dim
        self.out_dim = out_dim
        self.num_rels = num_rels
        self.num_bases = None if num_bases < 0 else num_bases
        self.num_hidden_layers = num_hidden_layers
        self.dropout = dropout
        self.use_self_loop = use_self_loop
        self.low_mem = low_mem
        self.layer_norm = layer_norm

        self.layers = nn.ModuleList()
        # i2h
        self.layers.append(RelGraphConv(
            self.h_dim, self.h_dim, self.num_rels, "basis",
            self.num_bases, activation=F.relu, self_loop=self.use_self_loop,
            low_mem=self.low_mem, dropout=self.dropout))
        # h2h
        for idx in range(self.num_hidden_layers):
            self.layers.append(RelGraphConv(
                self.h_dim, self.h_dim, self.num_rels, "basis",
                self.num_bases, activation=F.relu, self_loop=self.use_self_loop,
                low_mem=self.low_mem, dropout=self.dropout))
        # h2o
        self.layers.append(RelGraphConv(
            self.h_dim, self.out_dim, self.num_rels, "basis",
            self.num_bases, activation=None,
            self_loop=self.use_self_loop,
            low_mem=self.low_mem))

    def forward(self, blocks, feats, norm=None):
        if blocks is None:
            # full graph training
            blocks = [self.g] * len(self.layers)
        h = feats
        for layer, block in zip(self.layers, blocks):
            block = block.to(self.device)
108
            h = layer(block, h, block.edata[dgl.ETYPE], block.edata['norm'])
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
        return h

def init_emb(shape, dtype):
    arr = th.zeros(shape, dtype=dtype)
    nn.init.uniform_(arr, -1.0, 1.0)
    return arr

class DistEmbedLayer(nn.Module):
    r"""Embedding layer for featureless heterograph.
    Parameters
    ----------
    dev_id : int
        Device to run the layer.
    g : DistGraph
        training graph
    embed_size : int
        Output embed size
    sparse_emb: bool
        Whether to use sparse embedding
        Default: False
    dgl_sparse_emb: bool
        Whether to use DGL sparse embedding
        Default: False
    embed_name : str, optional
        Embed name
    """
    def __init__(self,
                 dev_id,
                 g,
                 embed_size,
                 sparse_emb=False,
                 dgl_sparse_emb=False,
141
                 feat_name='feat',
142
143
144
145
146
                 embed_name='node_emb'):
        super(DistEmbedLayer, self).__init__()
        self.dev_id = dev_id
        self.embed_size = embed_size
        self.embed_name = embed_name
147
        self.feat_name = feat_name
148
        self.sparse_emb = sparse_emb
149
150
151
152
153
154
155
156
157
        self.g = g
        self.ntype_id_map = {g.get_ntype_id(ntype):ntype for ntype in g.ntypes}

        self.node_projs = nn.ModuleDict()
        for ntype in g.ntypes:
            if feat_name in g.nodes[ntype].data:
                self.node_projs[ntype] = nn.Linear(g.nodes[ntype].data[feat_name].shape[1], embed_size)
                nn.init.xavier_uniform_(self.node_projs[ntype].weight)
                print('node {} has data {}'.format(ntype, feat_name))
158
159
        if sparse_emb:
            if dgl_sparse_emb:
160
161
162
163
164
                self.node_embeds = {}
                for ntype in g.ntypes:
                    # We only create embeddings for nodes without node features.
                    if feat_name not in g.nodes[ntype].data:
                        part_policy = g.get_node_partition_policy(ntype)
165
                        self.node_embeds[ntype] = dgl.distributed.nn.NodeEmbedding(g.number_of_nodes(ntype),
166
167
168
169
                                self.embed_size,
                                embed_name + '_' + ntype,
                                init_emb,
                                part_policy)
170
            else:
171
172
173
174
175
176
                self.node_embeds = nn.ModuleDict()
                for ntype in g.ntypes:
                    # We only create embeddings for nodes without node features.
                    if feat_name not in g.nodes[ntype].data:
                        self.node_embeds[ntype] = th.nn.Embedding(g.number_of_nodes(ntype), self.embed_size, sparse=self.sparse_emb)
                        nn.init.uniform_(self.node_embeds[ntype].weight, -1.0, 1.0)
177
        else:
178
179
180
181
182
183
184
185
            self.node_embeds = nn.ModuleDict()
            for ntype in g.ntypes:
                # We only create embeddings for nodes without node features.
                if feat_name not in g.nodes[ntype].data:
                    self.node_embeds[ntype] = th.nn.Embedding(g.number_of_nodes(ntype), self.embed_size)
                    nn.init.uniform_(self.node_embeds[ntype].weight, -1.0, 1.0)

    def forward(self, node_ids, ntype_ids):
186
187
188
        """Forward computation
        Parameters
        ----------
189
        node_ids : Tensor
190
            node ids to generate embedding for.
191
        ntype_ids : Tensor
192
193
194
195
196
197
            node type ids
        Returns
        -------
        tensor
            embeddings as the input of the next layer
        """
198
199
200
201
202
203
204
205
        embeds = th.empty(node_ids.shape[0], self.embed_size, device=self.dev_id)
        for ntype_id in th.unique(ntype_ids).tolist():
            ntype = self.ntype_id_map[int(ntype_id)]
            loc = ntype_ids == ntype_id
            if self.feat_name in self.g.nodes[ntype].data:
                embeds[loc] = self.node_projs[ntype](self.g.nodes[ntype].data[self.feat_name][node_ids[ntype_ids == ntype_id]].to(self.dev_id))
            else:
                embeds[loc] = self.node_embeds[ntype](node_ids[ntype_ids == ntype_id]).to(self.dev_id)
206
207
208
209
210
211
212
213
214
        return embeds

def compute_acc(results, labels):
    """
    Compute the accuracy of prediction given the labels.
    """
    labels = labels.long()
    return (results == labels).float().sum() / len(results)

215
216
217
218
219
220
221
222
223
def gen_norm(g):
    _, v, eid = g.all_edges(form='all')
    _, inverse_index, count = th.unique(v, return_inverse=True, return_counts=True)
    degrees = count[inverse_index]
    norm = th.ones(eid.shape[0], device=eid.device) / degrees
    norm = norm.unsqueeze(1)
    g.edata['norm'] = norm

def evaluate(g, model, embed_layer, labels, eval_loader, test_loader, all_val_nid, all_test_nid):
224
225
226
227
228
229
230
231
232
233
    model.eval()
    embed_layer.eval()
    eval_logits = []
    eval_seeds = []

    global_results = dgl.distributed.DistTensor(labels.shape, th.long, 'results', persistent=True)

    with th.no_grad():
        for sample_data in tqdm.tqdm(eval_loader):
            seeds, blocks = sample_data
234
235
236
            for block in blocks:
                gen_norm(block)
            feats = embed_layer(blocks[0].srcdata[dgl.NID], blocks[0].srcdata[dgl.NTYPE])
237
238
            logits = model(blocks, feats)
            eval_logits.append(logits.cpu().detach())
239
            assert np.all(seeds.numpy() < g.number_of_nodes('paper'))
240
241
242
243
244
245
246
247
248
249
            eval_seeds.append(seeds.cpu().detach())
    eval_logits = th.cat(eval_logits)
    eval_seeds = th.cat(eval_seeds)
    global_results[eval_seeds] = eval_logits.argmax(dim=1)

    test_logits = []
    test_seeds = []
    with th.no_grad():
        for sample_data in tqdm.tqdm(test_loader):
            seeds, blocks = sample_data
250
251
252
            for block in blocks:
                gen_norm(block)
            feats = embed_layer(blocks[0].srcdata[dgl.NID], blocks[0].srcdata[dgl.NTYPE])
253
254
            logits = model(blocks, feats)
            test_logits.append(logits.cpu().detach())
255
            assert np.all(seeds.numpy() < g.number_of_nodes('paper'))
256
257
258
259
260
261
262
            test_seeds.append(seeds.cpu().detach())
    test_logits = th.cat(test_logits)
    test_seeds = th.cat(test_seeds)
    global_results[test_seeds] = test_logits.argmax(dim=1)

    g.barrier()
    if g.rank() == 0:
263
264
        return compute_acc(global_results[all_val_nid], labels[all_val_nid]), \
            compute_acc(global_results[all_test_nid], labels[all_test_nid])
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
    else:
        return -1, -1

class NeighborSampler:
    """Neighbor sampler
    Parameters
    ----------
    g : DGLHeterograph
        Full graph
    target_idx : tensor
        The target training node IDs in g
    fanouts : list of int
        Fanout of each hop starting from the seed nodes. If a fanout is None,
        sample full neighbors.
    """
    def __init__(self, g, fanouts, sample_neighbors):
        self.g = g
        self.fanouts = fanouts
        self.sample_neighbors = sample_neighbors

    def sample_blocks(self, seeds):
        """Do neighbor sample
        Parameters
        ----------
        seeds :
            Seed nodes
        Returns
        -------
        tensor
            Seed nodes, also known as target nodes
        blocks
            Sampled subgraphs
        """
        blocks = []
        etypes = []
        norms = []
        ntypes = []
        seeds = th.LongTensor(np.asarray(seeds))
303
304
305
        gpb = self.g.get_partition_book()
        # We need to map the per-type node IDs to homogeneous IDs.
        cur = gpb.map_to_homo_nid(seeds, 'paper')
306
        for fanout in self.fanouts:
307
308
309
            # For a heterogeneous input graph, the returned frontier is stored in
            # the homogeneous graph format.
            frontier = self.sample_neighbors(self.g, cur, fanout, replace=False)
310
311
            block = dgl.to_block(frontier, cur)
            cur = block.srcdata[dgl.NID]
312
313
314
315
316
317
318

            block.edata[dgl.EID] = frontier.edata[dgl.EID]
            # Map the homogeneous edge Ids to their edge type.
            block.edata[dgl.ETYPE], block.edata[dgl.EID] = gpb.map_to_per_etype(block.edata[dgl.EID])
            # Map the homogeneous node Ids to their node types and per-type Ids.
            block.srcdata[dgl.NTYPE], block.srcdata[dgl.NID] = gpb.map_to_per_ntype(block.srcdata[dgl.NID])
            block.dstdata[dgl.NTYPE], block.dstdata[dgl.NID] = gpb.map_to_per_ntype(block.dstdata[dgl.NID])
319
320
321
322
            blocks.insert(0, block)
        return seeds, blocks

def run(args, device, data):
323
324
    g, num_classes, train_nid, val_nid, test_nid, labels, all_val_nid, all_test_nid = data
    num_rels = len(g.etypes)
325
326
327
328
329
330

    fanouts = [int(fanout) for fanout in args.fanout.split(',')]
    val_fanouts = [int(fanout) for fanout in args.validation_fanout.split(',')]
    sampler = NeighborSampler(g, fanouts, dgl.distributed.sample_neighbors)
    # Create DataLoader for constructing blocks
    dataloader = DistDataLoader(
331
        dataset=train_nid,
332
333
334
335
336
337
338
339
        batch_size=args.batch_size,
        collate_fn=sampler.sample_blocks,
        shuffle=True,
        drop_last=False)

    valid_sampler = NeighborSampler(g, val_fanouts, dgl.distributed.sample_neighbors)
    # Create DataLoader for constructing blocks
    valid_dataloader = DistDataLoader(
340
        dataset=val_nid,
341
342
343
344
345
346
347
348
        batch_size=args.batch_size,
        collate_fn=valid_sampler.sample_blocks,
        shuffle=False,
        drop_last=False)

    test_sampler = NeighborSampler(g, [-1] * args.n_layers, dgl.distributed.sample_neighbors)
    # Create DataLoader for constructing blocks
    test_dataloader = DistDataLoader(
349
        dataset=test_nid,
350
351
352
353
354
355
356
357
358
        batch_size=args.batch_size,
        collate_fn=test_sampler.sample_blocks,
        shuffle=False,
        drop_last=False)

    embed_layer = DistEmbedLayer(device,
                                 g,
                                 args.n_hidden,
                                 sparse_emb=args.sparse_embedding,
359
360
                                 dgl_sparse_emb=args.dgl_sparse,
                                 feat_name='feat')
361
362
363
364
365
366
367
368
369
370
371
372

    model = EntityClassify(device,
                           args.n_hidden,
                           num_classes,
                           num_rels,
                           num_bases=args.n_bases,
                           num_hidden_layers=args.n_layers-2,
                           dropout=args.dropout,
                           use_self_loop=args.use_self_loop,
                           low_mem=args.low_mem,
                           layer_norm=args.layer_norm)
    model = model.to(device)
373

374
    if not args.standalone:
375
376
377
378
379
380
381
382
383
384
385
386
387
388
        if args.num_gpus == -1:
            model = DistributedDataParallel(model)
            # If there are dense parameters in the embedding layer
            # or we use Pytorch saprse embeddings.
            if len(embed_layer.node_projs) > 0 or not args.dgl_sparse:
                embed_layer = DistributedDataParallel(embed_layer)
        else:
            dev_id = g.rank() % args.num_gpus
            model = DistributedDataParallel(model, device_ids=[dev_id], output_device=dev_id)
            # If there are dense parameters in the embedding layer
            # or we use Pytorch saprse embeddings.
            if len(embed_layer.node_projs) > 0 or not args.dgl_sparse:
                embed_layer = embed_layer.to(device)
                embed_layer = DistributedDataParallel(embed_layer, device_ids=[dev_id], output_device=dev_id)
389
390

    if args.sparse_embedding:
391
        if args.dgl_sparse and args.standalone:
392
            emb_optimizer = dgl.distributed.optim.SparseAdam(list(embed_layer.node_embeds.values()), lr=args.sparse_lr)
393
394
            print('optimize DGL sparse embedding:', embed_layer.node_embeds.keys())
        elif args.dgl_sparse:
395
            emb_optimizer = dgl.distributed.optim.SparseAdam(list(embed_layer.module.node_embeds.values()), lr=args.sparse_lr)
396
397
            print('optimize DGL sparse embedding:', embed_layer.module.node_embeds.keys())
        elif args.standalone:
398
            emb_optimizer = th.optim.SparseAdam(list(embed_layer.node_embeds.parameters()), lr=args.sparse_lr)
399
            print('optimize Pytorch sparse embedding:', embed_layer.node_embeds)
400
        else:
401
            emb_optimizer = th.optim.SparseAdam(list(embed_layer.module.node_embeds.parameters()), lr=args.sparse_lr)
402
            print('optimize Pytorch sparse embedding:', embed_layer.module.node_embeds)
403

404
        dense_params = list(model.parameters())
405
406
407
408
409
410
        if args.standalone:
            dense_params += list(embed_layer.node_projs.parameters())
            print('optimize dense projection:', embed_layer.node_projs)
        else:
            dense_params += list(embed_layer.module.node_projs.parameters())
            print('optimize dense projection:', embed_layer.module.node_projs)
411
        optimizer = th.optim.Adam(dense_params, lr=args.lr, weight_decay=args.l2norm)
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
    else:
        all_params = list(model.parameters()) + list(embed_layer.parameters())
        optimizer = th.optim.Adam(all_params, lr=args.lr, weight_decay=args.l2norm)

    # training loop
    print("start training...")
    for epoch in range(args.n_epochs):
        tic = time.time()

        sample_time = 0
        copy_time = 0
        forward_time = 0
        backward_time = 0
        update_time = 0
        number_train = 0

        step_time = []
        iter_t = []
        sample_t = []
        feat_copy_t = []
        forward_t = []
        backward_t = []
        update_t = []
        iter_tput = []

        start = time.time()
        # Loop over the dataloader to sample the computation dependency graph as a list of
        # blocks.
        step_time = []
        for step, sample_data in enumerate(dataloader):
            seeds, blocks = sample_data
            number_train += seeds.shape[0]
            tic_step = time.time()
            sample_time += tic_step - start
            sample_t.append(tic_step - start)

448
449
450
            for block in blocks:
                gen_norm(block)
            feats = embed_layer(blocks[0].srcdata[dgl.NID], blocks[0].srcdata[dgl.NTYPE])
451
            label = labels[seeds].to(device)
452
453
454
455
456
457
458
459
460
461
            copy_time = time.time()
            feat_copy_t.append(copy_time - tic_step)

            # forward
            logits = model(blocks, feats)
            loss = F.cross_entropy(logits, label)
            forward_end = time.time()

            # backward
            optimizer.zero_grad()
462
            if args.sparse_embedding:
463
464
465
466
467
468
                emb_optimizer.zero_grad()
            loss.backward()
            compute_end = time.time()
            forward_t.append(forward_end - copy_time)
            backward_t.append(compute_end - forward_end)

469
470
471
472
            # Update model parameters
            optimizer.step()
            if args.sparse_embedding:
                emb_optimizer.step()
473
474
475
476
            update_t.append(time.time() - compute_end)
            step_t = time.time() - start
            step_time.append(step_t)

477
478
            train_acc = th.sum(logits.argmax(dim=1) == label).item() / len(seeds)

479
            if step % args.log_every == 0:
480
                print('[{}] Epoch {:05d} | Step {:05d} | Train acc {:.4f} | Loss {:.4f} | time {:.3f} s' \
481
                        '| sample {:.3f} | copy {:.3f} | forward {:.3f} | backward {:.3f} | update {:.3f}'.format(
482
                    g.rank(), epoch, step, train_acc, loss.item(), np.sum(step_time[-args.log_every:]),
483
484
485
486
487
488
489
490
491
492
493
                    np.sum(sample_t[-args.log_every:]), np.sum(feat_copy_t[-args.log_every:]), np.sum(forward_t[-args.log_every:]),
                    np.sum(backward_t[-args.log_every:]), np.sum(update_t[-args.log_every:])))
            start = time.time()

        print('[{}]Epoch Time(s): {:.4f}, sample: {:.4f}, data copy: {:.4f}, forward: {:.4f}, backward: {:.4f}, update: {:.4f}, #number_train: {}'.format(
            g.rank(), np.sum(step_time), np.sum(sample_t), np.sum(feat_copy_t), np.sum(forward_t), np.sum(backward_t), np.sum(update_t), number_train))
        epoch += 1

        start = time.time()
        g.barrier()
        val_acc, test_acc = evaluate(g, model, embed_layer, labels,
494
            valid_dataloader, test_dataloader, all_val_nid, all_test_nid)
495
496
497
498
499
        if val_acc >= 0:
            print('Val Acc {:.4f}, Test Acc {:.4f}, time: {:.4f}'.format(val_acc, test_acc,
                                                                         time.time() - start))

def main(args):
500
    dgl.distributed.initialize(args.ip_config)
501
502
503
504
505
506
507
    if not args.standalone:
        th.distributed.init_process_group(backend='gloo')

    g = dgl.distributed.DistGraph(args.graph_name, part_config=args.conf_path)
    print('rank:', g.rank())

    pb = g.get_partition_book()
508
509
510
511
    train_nid = dgl.distributed.node_split(g.nodes['paper'].data['train_mask'], pb, ntype='paper', force_even=True)
    val_nid = dgl.distributed.node_split(g.nodes['paper'].data['val_mask'], pb, ntype='paper', force_even=True)
    test_nid = dgl.distributed.node_split(g.nodes['paper'].data['test_mask'], pb, ntype='paper', force_even=True)
    local_nid = pb.partid2nids(pb.partid, 'paper').detach().numpy()
512
513
514
515
    print('part {}, train: {} (local: {}), val: {} (local: {}), test: {} (local: {})'.format(
          g.rank(), len(train_nid), len(np.intersect1d(train_nid.numpy(), local_nid)),
          len(val_nid), len(np.intersect1d(val_nid.numpy(), local_nid)),
          len(test_nid), len(np.intersect1d(test_nid.numpy(), local_nid))))
516
517
518
519
    if args.num_gpus == -1:
        device = th.device('cpu')
    else:
        device = th.device('cuda:'+str(g.rank() % args.num_gpus))
520
521
522
    labels = g.nodes['paper'].data['labels'][np.arange(g.number_of_nodes('paper'))]
    all_val_nid = th.LongTensor(np.nonzero(g.nodes['paper'].data['val_mask'][np.arange(g.number_of_nodes('paper'))])).squeeze()
    all_test_nid = th.LongTensor(np.nonzero(g.nodes['paper'].data['test_mask'][np.arange(g.number_of_nodes('paper'))])).squeeze()
523
524
525
    n_classes = len(th.unique(labels[labels >= 0]))
    print('#classes:', n_classes)

526
    run(args, device, (g, n_classes, train_nid, val_nid, test_nid, labels, all_val_nid, all_test_nid))
527
528
529
530
531
532
533
534
535
536

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='RGCN')
    # distributed training related
    parser.add_argument('--graph-name', type=str, help='graph name')
    parser.add_argument('--id', type=int, help='the partition id')
    parser.add_argument('--ip-config', type=str, help='The file for IP configuration')
    parser.add_argument('--conf-path', type=str, help='The path to the partition config file')

    # rgcn related
537
    parser.add_argument('--num_gpus', type=int, default=-1,
538
                        help="the number of GPU device. Use -1 for CPU training")
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
    parser.add_argument("--dropout", type=float, default=0,
            help="dropout probability")
    parser.add_argument("--n-hidden", type=int, default=16,
            help="number of hidden units")
    parser.add_argument("--lr", type=float, default=1e-2,
            help="learning rate")
    parser.add_argument("--sparse-lr", type=float, default=1e-2,
            help="sparse lr rate")
    parser.add_argument("--n-bases", type=int, default=-1,
            help="number of filter weight matrices, default: -1 [use all]")
    parser.add_argument("--n-layers", type=int, default=2,
            help="number of propagation rounds")
    parser.add_argument("-e", "--n-epochs", type=int, default=50,
            help="number of training epochs")
    parser.add_argument("-d", "--dataset", type=str, required=True,
            help="dataset to use")
    parser.add_argument("--l2norm", type=float, default=0,
            help="l2 norm coef")
    parser.add_argument("--relabel", default=False, action='store_true',
            help="remove untouched nodes and relabel")
    parser.add_argument("--fanout", type=str, default="4, 4",
            help="Fan-out of neighbor sampling.")
    parser.add_argument("--validation-fanout", type=str, default=None,
            help="Fan-out of neighbor sampling during validation.")
    parser.add_argument("--use-self-loop", default=False, action='store_true',
            help="include self feature as a special relation")
    parser.add_argument("--batch-size", type=int, default=100,
            help="Mini-batch size. ")
    parser.add_argument("--eval-batch-size", type=int, default=128,
            help="Mini-batch size. ")
    parser.add_argument('--log-every', type=int, default=20)
    parser.add_argument("--low-mem", default=False, action='store_true',
            help="Whether use low mem RelGraphCov")
    parser.add_argument("--sparse-embedding", action='store_true',
            help='Use sparse embedding for node embeddings.')
    parser.add_argument("--dgl-sparse", action='store_true',
            help='Whether to use DGL sparse embedding')
    parser.add_argument('--layer-norm', default=False, action='store_true',
            help='Use layer norm')
    parser.add_argument('--local_rank', type=int, help='get rank of the process')
    parser.add_argument('--standalone', action='store_true', help='run in the standalone mode')
    args = parser.parse_args()

    # if validation_fanout is None, set it with args.fanout
    if args.validation_fanout is None:
        args.validation_fanout = args.fanout
    print(args)
    main(args)