test_dist_graph_store.py 14.5 KB
Newer Older
1
2
3
4
5
6
import os
os.environ['OMP_NUM_THREADS'] = '1'
import dgl
import sys
import numpy as np
import time
7
import socket
8
9
10
11
from scipy import sparse as spsp
from numpy.testing import assert_array_equal
from multiprocessing import Process, Manager, Condition, Value
import multiprocessing as mp
12
from dgl.heterograph_index import create_unitgraph_from_coo
13
14
from dgl.data.utils import load_graphs, save_graphs
from dgl.distributed import DistGraphServer, DistGraph
15
from dgl.distributed import partition_graph, load_partition, load_partition_book, node_split, edge_split
16
from dgl.distributed import SparseAdagrad, DistEmbedding
17
from numpy.testing import assert_almost_equal
18
import backend as F
19
import math
20
21
22
import unittest
import pickle

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
if os.name != 'nt':
    import fcntl
    import struct

def get_local_usable_addr():
    """Get local usable IP and port

    Returns
    -------
    str
        IP address, e.g., '192.168.8.12:50051'
    """
    sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
    try:
        # doesn't even have to be reachable
        sock.connect(('10.255.255.255', 1))
        ip_addr = sock.getsockname()[0]
    except ValueError:
        ip_addr = '127.0.0.1'
    finally:
        sock.close()
    sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    sock.bind(("", 0))
    sock.listen(1)
    port = sock.getsockname()[1]
    sock.close()

    return ip_addr + ' ' + str(port)

52
def create_random_graph(n):
53
54
    arr = (spsp.random(n, n, density=0.001, format='coo', random_state=100) != 0).astype(np.int64)
    return dgl.graph(arr)
55

56
def run_server(graph_name, server_id, num_clients, shared_mem):
57
    g = DistGraphServer(server_id, "kv_ip_config.txt", num_clients,
58
59
                        '/tmp/dist_graph/{}.json'.format(graph_name),
                        disable_shared_mem=not shared_mem)
60
61
62
    print('start server', server_id)
    g.start()

63
64
65
def emb_init(shape, dtype):
    return F.zeros(shape, dtype, F.cpu())

66
def rand_init(shape, dtype):
67
    return F.tensor(np.random.normal(size=shape), F.float32)
68

69
def run_client(graph_name, part_id, num_clients, num_nodes, num_edges):
70
    time.sleep(5)
71
    dgl.distributed.initialize("kv_ip_config.txt")
72
73
    gpb, graph_name = load_partition_book('/tmp/dist_graph/{}.json'.format(graph_name),
                                          part_id, None)
74
    g = DistGraph("kv_ip_config.txt", graph_name, gpb=gpb)
75
    check_dist_graph(g, num_clients, num_nodes, num_edges)
76

77
def check_dist_graph(g, num_clients, num_nodes, num_edges):
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
    # Test API
    assert g.number_of_nodes() == num_nodes
    assert g.number_of_edges() == num_edges

    # Test reading node data
    nids = F.arange(0, int(g.number_of_nodes() / 2))
    feats1 = g.ndata['features'][nids]
    feats = F.squeeze(feats1, 1)
    assert np.all(F.asnumpy(feats == nids))

    # Test reading edge data
    eids = F.arange(0, int(g.number_of_edges() / 2))
    feats1 = g.edata['features'][eids]
    feats = F.squeeze(feats1, 1)
    assert np.all(F.asnumpy(feats == eids))

    # Test init node data
    new_shape = (g.number_of_nodes(), 2)
96
    g.ndata['test1'] = dgl.distributed.DistTensor(g, new_shape, F.int32)
97
98
99
    feats = g.ndata['test1'][nids]
    assert np.all(F.asnumpy(feats) == 0)

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
    # reference to a one that exists
    test2 = dgl.distributed.DistTensor(g, new_shape, F.float32, 'test2', init_func=rand_init)
    test3 = dgl.distributed.DistTensor(g, new_shape, F.float32, 'test2')
    assert np.all(F.asnumpy(test2[nids]) == F.asnumpy(test3[nids]))

    # create a tensor and destroy a tensor and create it again.
    test3 = dgl.distributed.DistTensor(g, new_shape, F.float32, 'test3', init_func=rand_init)
    del test3
    test3 = dgl.distributed.DistTensor(g, (g.number_of_nodes(), 3), F.float32, 'test3')
    del test3

    # test a persistent tesnor
    test4 = dgl.distributed.DistTensor(g, new_shape, F.float32, 'test4', init_func=rand_init,
                                       persistent=True)
    del test4
    try:
        test4 = dgl.distributed.DistTensor(g, (g.number_of_nodes(), 3), F.float32, 'test4')
        raise Exception('')
    except:
        pass
120

121
122
    # Test sparse emb
    try:
123
        emb = DistEmbedding(g, g.number_of_nodes(), 1, 'emb1', emb_init)
124
125
126
127
128
129
130
131
132
        lr = 0.001
        optimizer = SparseAdagrad([emb], lr=lr)
        with F.record_grad():
            feats = emb(nids)
            assert np.all(F.asnumpy(feats) == np.zeros((len(nids), 1)))
            loss = F.sum(feats + 1, 0)
        loss.backward()
        optimizer.step()
        feats = emb(nids)
133
134
        if num_clients == 1:
            assert_almost_equal(F.asnumpy(feats), np.ones((len(nids), 1)) * -lr)
135
136
137
138
139
        rest = np.setdiff1d(np.arange(g.number_of_nodes()), F.asnumpy(nids))
        feats1 = emb(rest)
        assert np.all(F.asnumpy(feats1) == np.zeros((len(rest), 1)))

        policy = dgl.distributed.PartitionPolicy('node', g.get_partition_book())
140
141
        grad_sum = dgl.distributed.DistTensor(g, (g.number_of_nodes(),), F.float32,
                                              'emb1_sum', policy)
142
        assert np.all(F.asnumpy(grad_sum[nids]) == np.ones((len(nids), 1)) * num_clients)
143
144
        assert np.all(F.asnumpy(grad_sum[rest]) == np.zeros((len(rest), 1)))

145
        emb = DistEmbedding(g, g.number_of_nodes(), 1, 'emb2', emb_init)
146
147
148
149
        with F.no_grad():
            feats1 = emb(nids)
        assert np.all(F.asnumpy(feats1) == 0)

150
151
152
153
154
155
156
157
158
        optimizer = SparseAdagrad([emb], lr=lr)
        with F.record_grad():
            feats1 = emb(nids)
            feats2 = emb(nids)
            feats = F.cat([feats1, feats2], 0)
            assert np.all(F.asnumpy(feats) == np.zeros((len(nids) * 2, 1)))
            loss = F.sum(feats + 1, 0)
        loss.backward()
        optimizer.step()
159
160
        with F.no_grad():
            feats = emb(nids)
161
162
        if num_clients == 1:
            assert_almost_equal(F.asnumpy(feats), np.ones((len(nids), 1)) * math.sqrt(2) * -lr)
163
164
165
166
167
168
        rest = np.setdiff1d(np.arange(g.number_of_nodes()), F.asnumpy(nids))
        feats1 = emb(rest)
        assert np.all(F.asnumpy(feats1) == np.zeros((len(rest), 1)))
    except NotImplementedError as e:
        pass

169
170
171
172
173
174
175
176
177
178
179
180
181
182
    # Test write data
    new_feats = F.ones((len(nids), 2), F.int32, F.cpu())
    g.ndata['test1'][nids] = new_feats
    feats = g.ndata['test1'][nids]
    assert np.all(F.asnumpy(feats) == 1)

    # Test metadata operations.
    assert len(g.ndata['features']) == g.number_of_nodes()
    assert g.ndata['features'].shape == (g.number_of_nodes(), 1)
    assert g.ndata['features'].dtype == F.int64
    assert g.node_attr_schemes()['features'].dtype == F.int64
    assert g.node_attr_schemes()['test1'].dtype == F.int32
    assert g.node_attr_schemes()['features'].shape == (1,)

183
184
    selected_nodes = np.random.randint(0, 100, size=g.number_of_nodes()) > 30
    # Test node split
185
    nodes = node_split(selected_nodes, g.get_partition_book())
186
187
188
189
190
191
    nodes = F.asnumpy(nodes)
    # We only have one partition, so the local nodes are basically all nodes in the graph.
    local_nids = np.arange(g.number_of_nodes())
    for n in nodes:
        assert n in local_nids

192
193
    print('end')

194
195
def check_server_client(shared_mem, num_servers, num_clients):
    prepare_dist(num_servers)
196
197
198
199
    g = create_random_graph(10000)

    # Partition the graph
    num_parts = 1
200
    graph_name = 'dist_graph_test_2'
201
202
    g.ndata['features'] = F.unsqueeze(F.arange(0, g.number_of_nodes()), 1)
    g.edata['features'] = F.unsqueeze(F.arange(0, g.number_of_edges()), 1)
203
    partition_graph(g, graph_name, num_parts, '/tmp/dist_graph')
204
205
206
207

    # let's just test on one partition for now.
    # We cannot run multiple servers and clients on the same machine.
    serv_ps = []
208
    ctx = mp.get_context('spawn')
209
210
211
    for serv_id in range(num_servers):
        p = ctx.Process(target=run_server, args=(graph_name, serv_id,
                                                 num_clients, shared_mem))
212
213
214
215
        serv_ps.append(p)
        p.start()

    cli_ps = []
216
    for cli_id in range(num_clients):
217
        print('start client', cli_id)
218
        p = ctx.Process(target=run_client, args=(graph_name, 0, num_clients, g.number_of_nodes(),
219
                                                 g.number_of_edges()))
220
221
222
223
224
        p.start()
        cli_ps.append(p)

    for p in cli_ps:
        p.join()
225
226
227
228

    for p in serv_ps:
        p.join()

229
230
    print('clients have terminated')

231
232
@unittest.skipIf(dgl.backend.backend_name == "tensorflow", reason="TF doesn't support some of operations in DistGraph")
def test_server_client():
233
    os.environ['DGL_DIST_MODE'] = 'distributed'
234
235
236
237
    check_server_client(True, 1, 1)
    check_server_client(False, 1, 1)
    check_server_client(True, 2, 2)
    check_server_client(False, 2, 2)
238

239
240
241
242
243
244
245
246
247
248
249
@unittest.skipIf(dgl.backend.backend_name == "tensorflow", reason="TF doesn't support some of operations in DistGraph")
def test_standalone():
    os.environ['DGL_DIST_MODE'] = 'standalone'
    g = create_random_graph(10000)
    # Partition the graph
    num_parts = 1
    graph_name = 'dist_graph_test_3'
    g.ndata['features'] = F.unsqueeze(F.arange(0, g.number_of_nodes()), 1)
    g.edata['features'] = F.unsqueeze(F.arange(0, g.number_of_edges()), 1)
    partition_graph(g, graph_name, num_parts, '/tmp/dist_graph')
    dist_g = DistGraph("kv_ip_config.txt", graph_name,
250
                       part_config='/tmp/dist_graph/{}.json'.format(graph_name))
251
    check_dist_graph(dist_g, 1, g.number_of_nodes(), g.number_of_edges())
252

253
def test_split():
254
    #prepare_dist()
255
256
257
    g = create_random_graph(10000)
    num_parts = 4
    num_hops = 2
258
    partition_graph(g, 'dist_graph_test', num_parts, '/tmp/dist_graph', num_hops=num_hops, part_method='metis')
259
260
261
262
263
264

    node_mask = np.random.randint(0, 100, size=g.number_of_nodes()) > 30
    edge_mask = np.random.randint(0, 100, size=g.number_of_edges()) > 30
    selected_nodes = np.nonzero(node_mask)[0]
    selected_edges = np.nonzero(edge_mask)[0]
    for i in range(num_parts):
265
        dgl.distributed.set_num_client(num_parts)
266
        part_g, node_feats, edge_feats, gpb, _ = load_partition('/tmp/dist_graph/dist_graph_test.json', i)
Da Zheng's avatar
Da Zheng committed
267
        local_nids = F.nonzero_1d(part_g.ndata['inner_node'])
268
269
        local_nids = F.gather_row(part_g.ndata[dgl.NID], local_nids)
        nodes1 = np.intersect1d(selected_nodes, F.asnumpy(local_nids))
Da Zheng's avatar
Da Zheng committed
270
        nodes2 = node_split(node_mask, gpb, i, force_even=False)
271
272
273
274
275
        assert np.all(np.sort(nodes1) == np.sort(F.asnumpy(nodes2)))
        local_nids = F.asnumpy(local_nids)
        for n in nodes1:
            assert n in local_nids

276
        dgl.distributed.set_num_client(num_parts * 2)
Da Zheng's avatar
Da Zheng committed
277
278
        nodes3 = node_split(node_mask, gpb, i * 2, force_even=False)
        nodes4 = node_split(node_mask, gpb, i * 2 + 1, force_even=False)
279
280
281
282
        nodes5 = F.cat([nodes3, nodes4], 0)
        assert np.all(np.sort(nodes1) == np.sort(F.asnumpy(nodes5)))

        dgl.distributed.set_num_client(num_parts)
Da Zheng's avatar
Da Zheng committed
283
        local_eids = F.nonzero_1d(part_g.edata['inner_edge'])
284
285
        local_eids = F.gather_row(part_g.edata[dgl.EID], local_eids)
        edges1 = np.intersect1d(selected_edges, F.asnumpy(local_eids))
Da Zheng's avatar
Da Zheng committed
286
        edges2 = edge_split(edge_mask, gpb, i, force_even=False)
287
288
289
290
291
        assert np.all(np.sort(edges1) == np.sort(F.asnumpy(edges2)))
        local_eids = F.asnumpy(local_eids)
        for e in edges1:
            assert e in local_eids

292
        dgl.distributed.set_num_client(num_parts * 2)
Da Zheng's avatar
Da Zheng committed
293
294
        edges3 = edge_split(edge_mask, gpb, i * 2, force_even=False)
        edges4 = edge_split(edge_mask, gpb, i * 2 + 1, force_even=False)
295
296
297
298
        edges5 = F.cat([edges3, edges4], 0)
        assert np.all(np.sort(edges1) == np.sort(F.asnumpy(edges5)))

def test_split_even():
299
    #prepare_dist(1)
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
    g = create_random_graph(10000)
    num_parts = 4
    num_hops = 2
    partition_graph(g, 'dist_graph_test', num_parts, '/tmp/dist_graph', num_hops=num_hops, part_method='metis')

    node_mask = np.random.randint(0, 100, size=g.number_of_nodes()) > 30
    edge_mask = np.random.randint(0, 100, size=g.number_of_edges()) > 30
    selected_nodes = np.nonzero(node_mask)[0]
    selected_edges = np.nonzero(edge_mask)[0]
    all_nodes1 = []
    all_nodes2 = []
    all_edges1 = []
    all_edges2 = []
    for i in range(num_parts):
        dgl.distributed.set_num_client(num_parts)
315
        part_g, node_feats, edge_feats, gpb, _ = load_partition('/tmp/dist_graph/dist_graph_test.json', i)
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
        local_nids = F.nonzero_1d(part_g.ndata['inner_node'])
        local_nids = F.gather_row(part_g.ndata[dgl.NID], local_nids)
        nodes = node_split(node_mask, gpb, i, force_even=True)
        all_nodes1.append(nodes)
        subset = np.intersect1d(F.asnumpy(nodes), F.asnumpy(local_nids))
        print('part {} get {} nodes and {} are in the partition'.format(i, len(nodes), len(subset)))

        dgl.distributed.set_num_client(num_parts * 2)
        nodes1 = node_split(node_mask, gpb, i * 2, force_even=True)
        nodes2 = node_split(node_mask, gpb, i * 2 + 1, force_even=True)
        nodes3 = F.cat([nodes1, nodes2], 0)
        all_nodes2.append(nodes3)
        subset = np.intersect1d(F.asnumpy(nodes), F.asnumpy(nodes3))
        print('intersection has', len(subset))

        dgl.distributed.set_num_client(num_parts)
        local_eids = F.nonzero_1d(part_g.edata['inner_edge'])
        local_eids = F.gather_row(part_g.edata[dgl.EID], local_eids)
        edges = edge_split(edge_mask, gpb, i, force_even=True)
        all_edges1.append(edges)
        subset = np.intersect1d(F.asnumpy(edges), F.asnumpy(local_eids))
        print('part {} get {} edges and {} are in the partition'.format(i, len(edges), len(subset)))

        dgl.distributed.set_num_client(num_parts * 2)
        edges1 = edge_split(edge_mask, gpb, i * 2, force_even=True)
        edges2 = edge_split(edge_mask, gpb, i * 2 + 1, force_even=True)
        edges3 = F.cat([edges1, edges2], 0)
        all_edges2.append(edges3)
        subset = np.intersect1d(F.asnumpy(edges), F.asnumpy(edges3))
        print('intersection has', len(subset))
    all_nodes1 = F.cat(all_nodes1, 0)
    all_edges1 = F.cat(all_edges1, 0)
    all_nodes2 = F.cat(all_nodes2, 0)
    all_edges2 = F.cat(all_edges2, 0)
    all_nodes = np.nonzero(node_mask)[0]
    all_edges = np.nonzero(edge_mask)[0]
    assert np.all(all_nodes == F.asnumpy(all_nodes1))
    assert np.all(all_edges == F.asnumpy(all_edges1))
    assert np.all(all_nodes == F.asnumpy(all_nodes2))
    assert np.all(all_edges == F.asnumpy(all_edges2))

357
def prepare_dist(num_servers):
358
    ip_config = open("kv_ip_config.txt", "w")
359
    ip_addr = get_local_usable_addr()
360
    ip_config.write('{} {}\n'.format(ip_addr, num_servers))
361
362
    ip_config.close()

363
if __name__ == '__main__':
Da Zheng's avatar
Da Zheng committed
364
    os.makedirs('/tmp/dist_graph', exist_ok=True)
365
366
    test_split()
    test_split_even()
Da Zheng's avatar
Da Zheng committed
367
    test_server_client()
368
    test_standalone()