main.py 4.85 KB
Newer Older
kitaev-chen's avatar
kitaev-chen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import sys
import numpy as np
from tqdm import tqdm

import torch
import torch.nn as nn
import torch.optim as optim

from dgl.data.gindt import GINDataset
from dataloader import GraphDataLoader, collate
from parser import Parser
from gin import GIN


def train(args, net, trainloader, optimizer, criterion, epoch):
    net.train()

    running_loss = 0
    total_iters = len(trainloader)
    # setup the offset to avoid the overlap with mouse cursor
    bar = tqdm(range(total_iters), unit='batch', position=2, file=sys.stdout)

    for pos, (graphs, labels) in zip(bar, trainloader):
        # batch graphs will be shipped to device in forward part of model
        labels = labels.to(args.device)
26
27
        feat = graphs.ndata['attr'].to(args.device)
        outputs = net(graphs, feat)
kitaev-chen's avatar
kitaev-chen committed
28
29
30
31
32

        loss = criterion(outputs, labels)
        running_loss += loss.item()

        # backprop
33
34
35
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
kitaev-chen's avatar
kitaev-chen committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

        # report
        bar.set_description('epoch-{}'.format(epoch))
    bar.close()
    # the final batch will be aligned
    running_loss = running_loss / total_iters

    return running_loss


def eval_net(args, net, dataloader, criterion):
    net.eval()

    total = 0
    total_loss = 0
    total_correct = 0

    for data in dataloader:
        graphs, labels = data
55
        feat = graphs.ndata['attr'].to(args.device)
kitaev-chen's avatar
kitaev-chen committed
56
57
        labels = labels.to(args.device)
        total += len(labels)
58
        outputs = net(graphs, feat)
kitaev-chen's avatar
kitaev-chen committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
        _, predicted = torch.max(outputs.data, 1)

        total_correct += (predicted == labels.data).sum().item()
        loss = criterion(outputs, labels)
        # crossentropy(reduce=True) for default
        total_loss += loss.item() * len(labels)

    loss, acc = 1.0*total_loss / total, 1.0*total_correct / total

    net.train()

    return loss, acc


def main(args):

    # set up seeds, args.seed supported
Mufei Li's avatar
Mufei Li committed
76
77
    torch.manual_seed(seed=args.seed)
    np.random.seed(seed=args.seed)
kitaev-chen's avatar
kitaev-chen committed
78
79
80
81
82

    is_cuda = not args.disable_cuda and torch.cuda.is_available()

    if is_cuda:
        args.device = torch.device("cuda:" + str(args.device))
Mufei Li's avatar
Mufei Li committed
83
        torch.cuda.manual_seed_all(seed=args.seed)
kitaev-chen's avatar
kitaev-chen committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
    else:
        args.device = torch.device("cpu")

    dataset = GINDataset(args.dataset, not args.learn_eps)

    trainloader, validloader = GraphDataLoader(
        dataset, batch_size=args.batch_size, device=args.device,
        collate_fn=collate, seed=args.seed, shuffle=True,
        split_name='fold10', fold_idx=args.fold_idx).train_valid_loader()
    # or split_name='rand', split_ratio=0.7

    model = GIN(
        args.num_layers, args.num_mlp_layers,
        dataset.dim_nfeats, args.hidden_dim, dataset.gclasses,
        args.final_dropout, args.learn_eps,
99
        args.graph_pooling_type, args.neighbor_pooling_type).to(args.device)
kitaev-chen's avatar
kitaev-chen committed
100
101
102
103
104
105
106
107
108
109
110
111
112
113

    criterion = nn.CrossEntropyLoss()  # defaul reduce is true
    optimizer = optim.Adam(model.parameters(), lr=args.lr)
    scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=50, gamma=0.5)

    # it's not cost-effective to hanle the cursor and init 0
    # https://stackoverflow.com/a/23121189
    tbar = tqdm(range(args.epochs), unit="epoch", position=3, ncols=0, file=sys.stdout)
    vbar = tqdm(range(args.epochs), unit="epoch", position=4, ncols=0, file=sys.stdout)
    lrbar = tqdm(range(args.epochs), unit="epoch", position=5, ncols=0, file=sys.stdout)

    for epoch, _, _ in zip(tbar, vbar, lrbar):

        train(args, model, trainloader, optimizer, criterion, epoch)
Mufei Li's avatar
Mufei Li committed
114
        scheduler.step()
kitaev-chen's avatar
kitaev-chen committed
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

        train_loss, train_acc = eval_net(
            args, model, trainloader, criterion)
        tbar.set_description(
            'train set - average loss: {:.4f}, accuracy: {:.0f}%'
            .format(train_loss, 100. * train_acc))

        valid_loss, valid_acc = eval_net(
            args, model, validloader, criterion)
        vbar.set_description(
            'valid set - average loss: {:.4f}, accuracy: {:.0f}%'
            .format(valid_loss, 100. * valid_acc))

        if not args.filename == "":
            with open(args.filename, 'a') as f:
                f.write('%s %s %s %s' % (
                    args.dataset,
                    args.learn_eps,
                    args.neighbor_pooling_type,
                    args.graph_pooling_type
                ))
                f.write("\n")
                f.write("%f %f %f %f" % (
                    train_loss,
                    train_acc,
                    valid_loss,
                    valid_acc
                ))
                f.write("\n")

        lrbar.set_description(
VoVAllen's avatar
VoVAllen committed
146
147
            "Learning eps with learn_eps={}: {}".format(
                args.learn_eps, [layer.eps.data.item() for layer in model.ginlayers]))
kitaev-chen's avatar
kitaev-chen committed
148
149
150
151
152
153
154
155
156
157
158
159

    tbar.close()
    vbar.close()
    lrbar.close()


if __name__ == '__main__':
    args = Parser(description='GIN').args
    print('show all arguments configuration...')
    print(args)

    main(args)