main.py 4.82 KB
Newer Older
kitaev-chen's avatar
kitaev-chen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import sys
import numpy as np
from tqdm import tqdm

import torch
import torch.nn as nn
import torch.optim as optim

from dgl.data.gindt import GINDataset
from dataloader import GraphDataLoader, collate
from parser import Parser
from gin import GIN


def train(args, net, trainloader, optimizer, criterion, epoch):
    net.train()

    running_loss = 0
    total_iters = len(trainloader)
    # setup the offset to avoid the overlap with mouse cursor
    bar = tqdm(range(total_iters), unit='batch', position=2, file=sys.stdout)

    for pos, (graphs, labels) in zip(bar, trainloader):
        # batch graphs will be shipped to device in forward part of model
        labels = labels.to(args.device)
        outputs = net(graphs)

        loss = criterion(outputs, labels)
        running_loss += loss.item()

        # backprop
        if optimizer is not None:
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

        # report
        bar.set_description('epoch-{}'.format(epoch))
    bar.close()
    # the final batch will be aligned
    running_loss = running_loss / total_iters

    return running_loss


def eval_net(args, net, dataloader, criterion):
    net.eval()

    total = 0
    total_loss = 0
    total_correct = 0

    # total_iters = len(dataloader)

    for data in dataloader:
        graphs, labels = data
        labels = labels.to(args.device)

        total += len(labels)

        outputs = net(graphs)
        _, predicted = torch.max(outputs.data, 1)

        total_correct += (predicted == labels.data).sum().item()
        loss = criterion(outputs, labels)
        # crossentropy(reduce=True) for default
        total_loss += loss.item() * len(labels)

    loss, acc = 1.0*total_loss / total, 1.0*total_correct / total

    net.train()

    return loss, acc


def main(args):

    # set up seeds, args.seed supported
    torch.manual_seed(seed=0)
    np.random.seed(seed=0)

    is_cuda = not args.disable_cuda and torch.cuda.is_available()

    if is_cuda:
        args.device = torch.device("cuda:" + str(args.device))
        torch.cuda.manual_seed_all(seed=0)
    else:
        args.device = torch.device("cpu")

    dataset = GINDataset(args.dataset, not args.learn_eps)

    trainloader, validloader = GraphDataLoader(
        dataset, batch_size=args.batch_size, device=args.device,
        collate_fn=collate, seed=args.seed, shuffle=True,
        split_name='fold10', fold_idx=args.fold_idx).train_valid_loader()
    # or split_name='rand', split_ratio=0.7

    model = GIN(
        args.num_layers, args.num_mlp_layers,
        dataset.dim_nfeats, args.hidden_dim, dataset.gclasses,
        args.final_dropout, args.learn_eps,
        args.graph_pooling_type, args.neighbor_pooling_type,
        args.device).to(args.device)

    criterion = nn.CrossEntropyLoss()  # defaul reduce is true
    optimizer = optim.Adam(model.parameters(), lr=args.lr)
    scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=50, gamma=0.5)

    # it's not cost-effective to hanle the cursor and init 0
    # https://stackoverflow.com/a/23121189
    tbar = tqdm(range(args.epochs), unit="epoch", position=3, ncols=0, file=sys.stdout)
    vbar = tqdm(range(args.epochs), unit="epoch", position=4, ncols=0, file=sys.stdout)
    lrbar = tqdm(range(args.epochs), unit="epoch", position=5, ncols=0, file=sys.stdout)

    for epoch, _, _ in zip(tbar, vbar, lrbar):
        scheduler.step()

        train(args, model, trainloader, optimizer, criterion, epoch)

        train_loss, train_acc = eval_net(
            args, model, trainloader, criterion)
        tbar.set_description(
            'train set - average loss: {:.4f}, accuracy: {:.0f}%'
            .format(train_loss, 100. * train_acc))

        valid_loss, valid_acc = eval_net(
            args, model, validloader, criterion)
        vbar.set_description(
            'valid set - average loss: {:.4f}, accuracy: {:.0f}%'
            .format(valid_loss, 100. * valid_acc))

        if not args.filename == "":
            with open(args.filename, 'a') as f:
                f.write('%s %s %s %s' % (
                    args.dataset,
                    args.learn_eps,
                    args.neighbor_pooling_type,
                    args.graph_pooling_type
                ))
                f.write("\n")
                f.write("%f %f %f %f" % (
                    train_loss,
                    train_acc,
                    valid_loss,
                    valid_acc
                ))
                f.write("\n")

        lrbar.set_description(
VoVAllen's avatar
VoVAllen committed
150
151
            "Learning eps with learn_eps={}: {}".format(
                args.learn_eps, [layer.eps.data.item() for layer in model.ginlayers]))
kitaev-chen's avatar
kitaev-chen committed
152
153
154
155
156
157
158
159
160
161
162
163

    tbar.close()
    vbar.close()
    lrbar.close()


if __name__ == '__main__':
    args = Parser(description='GIN').args
    print('show all arguments configuration...')
    print(args)

    main(args)