train_dist.py 13.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
import os
os.environ['DGLBACKEND']='pytorch'
from multiprocessing import Process
import argparse, time, math
import numpy as np
from functools import wraps
import tqdm

import dgl
from dgl import DGLGraph
from dgl.data import register_data_args, load_data
from dgl.data.utils import load_graphs
import dgl.function as fn
import dgl.nn.pytorch as dglnn

import torch as th
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.multiprocessing as mp
from torch.utils.data import DataLoader
from pyinstrument import Profiler

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
class NeighborSampler(object):
    def __init__(self, g, fanouts, sample_neighbors):
        self.g = g
        self.fanouts = fanouts
        self.sample_neighbors = sample_neighbors

    def sample_blocks(self, seeds):
        seeds = th.LongTensor(np.asarray(seeds))
        blocks = []
        for fanout in self.fanouts:
            # For each seed node, sample ``fanout`` neighbors.
            frontier = self.sample_neighbors(self.g, seeds, fanout, replace=True)
            # Then we compact the frontier into a bipartite graph for message passing.
            block = dgl.to_block(frontier, seeds)
            # Obtain the seed nodes for next layer.
            seeds = block.srcdata[dgl.NID]

            blocks.insert(0, block)
        return blocks
43

44
class DistSAGE(nn.Module):
45
46
    def __init__(self, in_feats, n_hidden, n_classes, n_layers,
                 activation, dropout):
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
        super().__init__()
        self.n_layers = n_layers
        self.n_hidden = n_hidden
        self.n_classes = n_classes
        self.layers = nn.ModuleList()
        self.layers.append(dglnn.SAGEConv(in_feats, n_hidden, 'mean'))
        for i in range(1, n_layers - 1):
            self.layers.append(dglnn.SAGEConv(n_hidden, n_hidden, 'mean'))
        self.layers.append(dglnn.SAGEConv(n_hidden, n_classes, 'mean'))
        self.dropout = nn.Dropout(dropout)
        self.activation = activation

    def forward(self, blocks, x):
        h = x
        for l, (layer, block) in enumerate(zip(self.layers, blocks)):
            h = layer(block, h)
            if l != len(self.layers) - 1:
                h = self.activation(h)
                h = self.dropout(h)
        return h
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

    def inference(self, g, x, batch_size, device):
        """
        Inference with the GraphSAGE model on full neighbors (i.e. without neighbor sampling).
        g : the entire graph.
        x : the input of entire node set.

        The inference code is written in a fashion that it could handle any number of nodes and
        layers.
        """
        # During inference with sampling, multi-layer blocks are very inefficient because
        # lots of computations in the first few layers are repeated.
        # Therefore, we compute the representation of all nodes layer by layer.  The nodes
        # on each layer are of course splitted in batches.
        # TODO: can we standardize this?
        nodes = dgl.distributed.node_split(np.arange(g.number_of_nodes()),
                                           g.get_partition_book(), force_even=True)
        y = dgl.distributed.DistTensor(g, (g.number_of_nodes(), self.n_hidden), th.float32, 'h',
                                       persistent=True)
        for l, layer in enumerate(self.layers):
            if l == len(self.layers) - 1:
                y = dgl.distributed.DistTensor(g, (g.number_of_nodes(), self.n_classes),
                                               th.float32, 'h_last', persistent=True)

            sampler = NeighborSampler(g, [-1], dgl.distributed.sample_neighbors)
            print('|V|={}, eval batch size: {}'.format(g.number_of_nodes(), batch_size))
            # Create PyTorch DataLoader for constructing blocks
            dataloader = DataLoader(
                dataset=nodes,
                batch_size=batch_size,
                collate_fn=sampler.sample_blocks,
                shuffle=False,
                drop_last=False,
                num_workers=args.num_workers)

            for blocks in tqdm.tqdm(dataloader):
                block = blocks[0]
                input_nodes = block.srcdata[dgl.NID]
                output_nodes = block.dstdata[dgl.NID]
                h = x[input_nodes].to(device)
                h_dst = h[:block.number_of_dst_nodes()]
                h = layer(block, (h, h_dst))
                if l != len(self.layers) - 1:
                    h = self.activation(h)
                    h = self.dropout(h)

                y[output_nodes] = h.cpu()

            x = y
            g.barrier()
        return y

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
def compute_acc(pred, labels):
    """
    Compute the accuracy of prediction given the labels.
    """
    labels = labels.long()
    return (th.argmax(pred, dim=1) == labels).float().sum() / len(pred)

def evaluate(model, g, inputs, labels, val_nid, test_nid, batch_size, device):
    """
    Evaluate the model on the validation set specified by ``val_nid``.
    g : The entire graph.
    inputs : The features of all the nodes.
    labels : The labels of all the nodes.
    val_nid : the node Ids for validation.
    batch_size : Number of nodes to compute at the same time.
    device : The GPU device to evaluate on.
    """
    model.eval()
    with th.no_grad():
        pred = model.inference(g, inputs, batch_size, device)
    model.train()
    return compute_acc(pred[val_nid], labels[val_nid]), compute_acc(pred[test_nid], labels[test_nid])

def load_subtensor(g, seeds, input_nodes, device):
    """
    Copys features and labels of a set of nodes onto GPU.
    """
    batch_inputs = g.ndata['features'][input_nodes].to(device)
    batch_labels = g.ndata['labels'][seeds].to(device)
    return batch_inputs, batch_labels

150
151
def run(args, device, data):
    # Unpack data
152
    train_nid, val_nid, test_nid, in_feats, n_classes, g = data
153
154
155
156
157
158
159
160
161
162
163
164
165
166
    # Create sampler
    sampler = NeighborSampler(g, [int(fanout) for fanout in args.fan_out.split(',')],
                              dgl.distributed.sample_neighbors)

    # Create PyTorch DataLoader for constructing blocks
    dataloader = DataLoader(
        dataset=train_nid.numpy(),
        batch_size=args.batch_size,
        collate_fn=sampler.sample_blocks,
        shuffle=True,
        drop_last=False,
        num_workers=args.num_workers)

    # Define model and optimizer
167
    model = DistSAGE(in_feats, args.num_hidden, n_classes, args.num_layers, F.relu, args.dropout)
168
    model = model.to(device)
169
170
    if not args.standalone:
        model = th.nn.parallel.DistributedDataParallel(model)
171
172
173
174
175
176
177
178
179
180
181
    loss_fcn = nn.CrossEntropyLoss()
    loss_fcn = loss_fcn.to(device)
    optimizer = optim.Adam(model.parameters(), lr=args.lr)

    train_size = th.sum(g.ndata['train_mask'][0:g.number_of_nodes()])

    # Training loop
    iter_tput = []
    profiler = Profiler()
    profiler.start()
    epoch = 0
182
    for epoch in range(args.num_epochs):
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
        tic = time.time()

        sample_time = 0
        copy_time = 0
        forward_time = 0
        backward_time = 0
        update_time = 0
        num_seeds = 0
        num_inputs = 0
        start = time.time()
        # Loop over the dataloader to sample the computation dependency graph as a list of
        # blocks.
        step_time = []
        for step, blocks in enumerate(dataloader):
            tic_step = time.time()
            sample_time += tic_step - start

            # The nodes for input lies at the LHS side of the first block.
            # The nodes for output lies at the RHS side of the last block.
            input_nodes = blocks[0].srcdata[dgl.NID]
            seeds = blocks[-1].dstdata[dgl.NID]

            # Load the input features as well as output labels
            start = time.time()
            batch_inputs, batch_labels = load_subtensor(g, seeds, input_nodes, device)
208
209
            assert th.all(th.logical_not(th.isnan(batch_labels)))
            batch_labels = batch_labels.long()
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
            copy_time += time.time() - start

            num_seeds += len(blocks[-1].dstdata[dgl.NID])
            num_inputs += len(blocks[0].srcdata[dgl.NID])
            # Compute loss and prediction
            start = time.time()
            batch_pred = model(blocks, batch_inputs)
            loss = loss_fcn(batch_pred, batch_labels)
            forward_end = time.time()
            optimizer.zero_grad()
            loss.backward()
            compute_end = time.time()
            forward_time += forward_end - start
            backward_time += compute_end - forward_end

            # Aggregate gradients in multiple nodes.
226
227
228
229
230
            if not args.standalone:
                for param in model.parameters():
                    if param.requires_grad and param.grad is not None:
                        th.distributed.all_reduce(param.grad.data,
                                                  op=th.distributed.ReduceOp.SUM)
231
                        param.grad.data /= dgl.distributed.get_num_client()
232
233
234
235
236
237
238
239
240
241

            optimizer.step()
            update_time += time.time() - compute_end

            step_t = time.time() - tic_step
            step_time.append(step_t)
            iter_tput.append(num_seeds / (step_t))
            if step % args.log_every == 0:
                acc = compute_acc(batch_pred, batch_labels)
                gpu_mem_alloc = th.cuda.max_memory_allocated() / 1000000 if th.cuda.is_available() else 0
242
243
                print('Part {} | Epoch {:05d} | Step {:05d} | Loss {:.4f} | Train Acc {:.4f} | Speed (samples/sec) {:.4f} | GPU {:.1f} MiB | time {:.3f} s'.format(
                    g.rank(), epoch, step, loss.item(), acc.item(), np.mean(iter_tput[3:]), gpu_mem_alloc, np.sum(step_time[-args.log_every:])))
244
245
246
            start = time.time()

        toc = time.time()
247
248
        print('Part {}, Epoch Time(s): {:.4f}, sample: {:.4f}, data copy: {:.4f}, forward: {:.4f}, backward: {:.4f}, update: {:.4f}, #seeds: {}, #inputs: {}'.format(
            g.rank(), toc - tic, sample_time, copy_time, forward_time, backward_time, update_time, num_seeds, num_inputs))
249
250
251
        epoch += 1


252
253
        if epoch % args.eval_every == 0 and epoch != 0:
            start = time.time()
254
255
256
257
            val_acc, test_acc = evaluate(model.module, g, g.ndata['features'],
                                         g.ndata['labels'], val_nid, test_nid, args.batch_size_eval, device)
            print('Part {}, Val Acc {:.4f}, Test Acc {:.4f}, time: {:.4f}'.format(g.rank(), val_acc, test_acc,
                                                                                  time.time() - start))
258
259
260
261

    profiler.stop()
    print(profiler.output_text(unicode=True, color=True))
    # clean up
262
263
    if not args.standalone:
        g._client.barrier()
264
265

def main(args):
266
267
    if not args.standalone:
        th.distributed.init_process_group(backend='gloo')
268
    g = dgl.distributed.DistGraph(args.ip_config, args.graph_name, part_config=args.conf_path)
269
    print('rank:', g.rank())
270

271
272
273
274
275
276
277
278
279
    pb = g.get_partition_book()
    train_nid = dgl.distributed.node_split(g.ndata['train_mask'], pb, force_even=True)
    val_nid = dgl.distributed.node_split(g.ndata['val_mask'], pb, force_even=True)
    test_nid = dgl.distributed.node_split(g.ndata['test_mask'], pb, force_even=True)
    local_nid = pb.partid2nids(pb.partid).detach().numpy()
    print('part {}, train: {} (local: {}), val: {} (local: {}), test: {} (local: {})'.format(
        g.rank(), len(train_nid), len(np.intersect1d(train_nid.numpy(), local_nid)),
        len(val_nid), len(np.intersect1d(val_nid.numpy(), local_nid)),
        len(test_nid), len(np.intersect1d(test_nid.numpy(), local_nid))))
280
    device = th.device('cpu')
281
282
283
    labels = g.ndata['labels'][np.arange(g.number_of_nodes())]
    n_classes = len(th.unique(labels[th.logical_not(th.isnan(labels))]))
    print('#labels:', n_classes)
284
285
286

    # Pack data
    in_feats = g.ndata['features'].shape[1]
287
    data = train_nid, val_nid, test_nid, in_feats, n_classes, g
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
    run(args, device, data)
    print("parent ends")

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='GCN')
    register_data_args(parser)
    parser.add_argument('--graph-name', type=str, help='graph name')
    parser.add_argument('--id', type=int, help='the partition id')
    parser.add_argument('--ip_config', type=str, help='The file for IP configuration')
    parser.add_argument('--conf_path', type=str, help='The path to the partition config file')
    parser.add_argument('--num-client', type=int, help='The number of clients')
    parser.add_argument('--n-classes', type=int, help='the number of classes')
    parser.add_argument('--gpu', type=int, default=0,
        help="GPU device ID. Use -1 for CPU training")
    parser.add_argument('--num-epochs', type=int, default=20)
    parser.add_argument('--num-hidden', type=int, default=16)
    parser.add_argument('--num-layers', type=int, default=2)
    parser.add_argument('--fan-out', type=str, default='10,25')
    parser.add_argument('--batch-size', type=int, default=1000)
307
    parser.add_argument('--batch-size-eval', type=int, default=100000)
308
309
310
311
312
313
314
    parser.add_argument('--log-every', type=int, default=20)
    parser.add_argument('--eval-every', type=int, default=5)
    parser.add_argument('--lr', type=float, default=0.003)
    parser.add_argument('--dropout', type=float, default=0.5)
    parser.add_argument('--num-workers', type=int, default=0,
        help="Number of sampling processes. Use 0 for no extra process.")
    parser.add_argument('--local_rank', type=int, help='get rank of the process')
315
    parser.add_argument('--standalone', action='store_true', help='run in the standalone mode')
316
317
318
    args = parser.parse_args()

    print(args)
319
    main(args)