train_dist.py 11.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
import os
os.environ['DGLBACKEND']='pytorch'
from multiprocessing import Process
import argparse, time, math
import numpy as np
from functools import wraps
import tqdm

import dgl
from dgl import DGLGraph
from dgl.data import register_data_args, load_data
from dgl.data.utils import load_graphs
import dgl.function as fn
import dgl.nn.pytorch as dglnn

import torch as th
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.multiprocessing as mp
from torch.utils.data import DataLoader
from pyinstrument import Profiler

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from train_sampling import run, SAGE, compute_acc, evaluate, load_subtensor

class NeighborSampler(object):
    def __init__(self, g, fanouts, sample_neighbors):
        self.g = g
        self.fanouts = fanouts
        self.sample_neighbors = sample_neighbors

    def sample_blocks(self, seeds):
        seeds = th.LongTensor(np.asarray(seeds))
        blocks = []
        for fanout in self.fanouts:
            # For each seed node, sample ``fanout`` neighbors.
            frontier = self.sample_neighbors(self.g, seeds, fanout, replace=True)
            # Then we compact the frontier into a bipartite graph for message passing.
            block = dgl.to_block(frontier, seeds)
            # Obtain the seed nodes for next layer.
            seeds = block.srcdata[dgl.NID]

            blocks.insert(0, block)
        return blocks
45

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
class DistSAGE(SAGE):
    def __init__(self, in_feats, n_hidden, n_classes, n_layers,
                 activation, dropout):
        super(DistSAGE, self).__init__(in_feats, n_hidden, n_classes, n_layers,
                                       activation, dropout)

    def inference(self, g, x, batch_size, device):
        """
        Inference with the GraphSAGE model on full neighbors (i.e. without neighbor sampling).
        g : the entire graph.
        x : the input of entire node set.

        The inference code is written in a fashion that it could handle any number of nodes and
        layers.
        """
        # During inference with sampling, multi-layer blocks are very inefficient because
        # lots of computations in the first few layers are repeated.
        # Therefore, we compute the representation of all nodes layer by layer.  The nodes
        # on each layer are of course splitted in batches.
        # TODO: can we standardize this?
        nodes = dgl.distributed.node_split(np.arange(g.number_of_nodes()),
                                           g.get_partition_book(), force_even=True)
        y = dgl.distributed.DistTensor(g, (g.number_of_nodes(), self.n_hidden), th.float32, 'h',
                                       persistent=True)
        for l, layer in enumerate(self.layers):
            if l == len(self.layers) - 1:
                y = dgl.distributed.DistTensor(g, (g.number_of_nodes(), self.n_classes),
                                               th.float32, 'h_last', persistent=True)

            sampler = NeighborSampler(g, [-1], dgl.distributed.sample_neighbors)
            print('|V|={}, eval batch size: {}'.format(g.number_of_nodes(), batch_size))
            # Create PyTorch DataLoader for constructing blocks
            dataloader = DataLoader(
                dataset=nodes,
                batch_size=batch_size,
                collate_fn=sampler.sample_blocks,
                shuffle=False,
                drop_last=False,
                num_workers=args.num_workers)

            for blocks in tqdm.tqdm(dataloader):
                block = blocks[0]
                input_nodes = block.srcdata[dgl.NID]
                output_nodes = block.dstdata[dgl.NID]
                h = x[input_nodes].to(device)
                h_dst = h[:block.number_of_dst_nodes()]
                h = layer(block, (h, h_dst))
                if l != len(self.layers) - 1:
                    h = self.activation(h)
                    h = self.dropout(h)

                y[output_nodes] = h.cpu()

            x = y
            g.barrier()
        return y

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
def run(args, device, data):
    # Unpack data
    train_nid, val_nid, in_feats, n_classes, g = data
    # Create sampler
    sampler = NeighborSampler(g, [int(fanout) for fanout in args.fan_out.split(',')],
                              dgl.distributed.sample_neighbors)

    # Create PyTorch DataLoader for constructing blocks
    dataloader = DataLoader(
        dataset=train_nid.numpy(),
        batch_size=args.batch_size,
        collate_fn=sampler.sample_blocks,
        shuffle=True,
        drop_last=False,
        num_workers=args.num_workers)

    # Define model and optimizer
120
    model = DistSAGE(in_feats, args.num_hidden, n_classes, args.num_layers, F.relu, args.dropout)
121
    model = model.to(device)
122
123
    if not args.standalone:
        model = th.nn.parallel.DistributedDataParallel(model)
124
125
126
127
128
129
130
131
132
133
134
    loss_fcn = nn.CrossEntropyLoss()
    loss_fcn = loss_fcn.to(device)
    optimizer = optim.Adam(model.parameters(), lr=args.lr)

    train_size = th.sum(g.ndata['train_mask'][0:g.number_of_nodes()])

    # Training loop
    iter_tput = []
    profiler = Profiler()
    profiler.start()
    epoch = 0
135
    for epoch in range(args.num_epochs):
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
        tic = time.time()

        sample_time = 0
        copy_time = 0
        forward_time = 0
        backward_time = 0
        update_time = 0
        num_seeds = 0
        num_inputs = 0
        start = time.time()
        # Loop over the dataloader to sample the computation dependency graph as a list of
        # blocks.
        step_time = []
        for step, blocks in enumerate(dataloader):
            tic_step = time.time()
            sample_time += tic_step - start

            # The nodes for input lies at the LHS side of the first block.
            # The nodes for output lies at the RHS side of the last block.
            input_nodes = blocks[0].srcdata[dgl.NID]
            seeds = blocks[-1].dstdata[dgl.NID]

            # Load the input features as well as output labels
            start = time.time()
            batch_inputs, batch_labels = load_subtensor(g, seeds, input_nodes, device)
161
162
            assert th.all(th.logical_not(th.isnan(batch_labels)))
            batch_labels = batch_labels.long()
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
            copy_time += time.time() - start

            num_seeds += len(blocks[-1].dstdata[dgl.NID])
            num_inputs += len(blocks[0].srcdata[dgl.NID])
            # Compute loss and prediction
            start = time.time()
            batch_pred = model(blocks, batch_inputs)
            loss = loss_fcn(batch_pred, batch_labels)
            forward_end = time.time()
            optimizer.zero_grad()
            loss.backward()
            compute_end = time.time()
            forward_time += forward_end - start
            backward_time += compute_end - forward_end

            # Aggregate gradients in multiple nodes.
179
180
181
182
183
            if not args.standalone:
                for param in model.parameters():
                    if param.requires_grad and param.grad is not None:
                        th.distributed.all_reduce(param.grad.data,
                                                  op=th.distributed.ReduceOp.SUM)
184
                        param.grad.data /= dgl.distributed.get_num_client()
185
186
187
188
189
190
191
192
193
194

            optimizer.step()
            update_time += time.time() - compute_end

            step_t = time.time() - tic_step
            step_time.append(step_t)
            iter_tput.append(num_seeds / (step_t))
            if step % args.log_every == 0:
                acc = compute_acc(batch_pred, batch_labels)
                gpu_mem_alloc = th.cuda.max_memory_allocated() / 1000000 if th.cuda.is_available() else 0
195
196
                print('Part {} | Epoch {:05d} | Step {:05d} | Loss {:.4f} | Train Acc {:.4f} | Speed (samples/sec) {:.4f} | GPU {:.1f} MiB | time {:.3f} s'.format(
                    g.rank(), epoch, step, loss.item(), acc.item(), np.mean(iter_tput[3:]), gpu_mem_alloc, np.sum(step_time[-args.log_every:])))
197
198
199
            start = time.time()

        toc = time.time()
200
201
        print('Part {}, Epoch Time(s): {:.4f}, sample: {:.4f}, data copy: {:.4f}, forward: {:.4f}, backward: {:.4f}, update: {:.4f}, #seeds: {}, #inputs: {}'.format(
            g.rank(), toc - tic, sample_time, copy_time, forward_time, backward_time, update_time, num_seeds, num_inputs))
202
203
204
        epoch += 1


205
206
207
208
209
        if epoch % args.eval_every == 0 and epoch != 0:
            start = time.time()
            eval_acc = evaluate(model.module, g, g.ndata['features'],
                                g.ndata['labels'], val_nid, args.batch_size_eval, device)
            print('Part {}, Eval Acc {:.4f}, time: {:.4f}'.format(g.rank(), eval_acc, time.time() - start))
210
211
212
213

    profiler.stop()
    print(profiler.output_text(unicode=True, color=True))
    # clean up
214
215
    if not args.standalone:
        g._client.barrier()
216
217

def main(args):
218
219
220
    if not args.standalone:
        th.distributed.init_process_group(backend='gloo')
    g = dgl.distributed.DistGraph(args.ip_config, args.graph_name, conf_file=args.conf_path)
221
    print('rank:', g.rank())
222

223
224
225
226
227
228
229
230
231
    pb = g.get_partition_book()
    train_nid = dgl.distributed.node_split(g.ndata['train_mask'], pb, force_even=True)
    val_nid = dgl.distributed.node_split(g.ndata['val_mask'], pb, force_even=True)
    test_nid = dgl.distributed.node_split(g.ndata['test_mask'], pb, force_even=True)
    local_nid = pb.partid2nids(pb.partid).detach().numpy()
    print('part {}, train: {} (local: {}), val: {} (local: {}), test: {} (local: {})'.format(
        g.rank(), len(train_nid), len(np.intersect1d(train_nid.numpy(), local_nid)),
        len(val_nid), len(np.intersect1d(val_nid.numpy(), local_nid)),
        len(test_nid), len(np.intersect1d(test_nid.numpy(), local_nid))))
232
    device = th.device('cpu')
233
234
235
    labels = g.ndata['labels'][np.arange(g.number_of_nodes())]
    n_classes = len(th.unique(labels[th.logical_not(th.isnan(labels))]))
    print('#labels:', n_classes)
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258

    # Pack data
    in_feats = g.ndata['features'].shape[1]
    data = train_nid, val_nid, in_feats, n_classes, g
    run(args, device, data)
    print("parent ends")

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='GCN')
    register_data_args(parser)
    parser.add_argument('--graph-name', type=str, help='graph name')
    parser.add_argument('--id', type=int, help='the partition id')
    parser.add_argument('--ip_config', type=str, help='The file for IP configuration')
    parser.add_argument('--conf_path', type=str, help='The path to the partition config file')
    parser.add_argument('--num-client', type=int, help='The number of clients')
    parser.add_argument('--n-classes', type=int, help='the number of classes')
    parser.add_argument('--gpu', type=int, default=0,
        help="GPU device ID. Use -1 for CPU training")
    parser.add_argument('--num-epochs', type=int, default=20)
    parser.add_argument('--num-hidden', type=int, default=16)
    parser.add_argument('--num-layers', type=int, default=2)
    parser.add_argument('--fan-out', type=str, default='10,25')
    parser.add_argument('--batch-size', type=int, default=1000)
259
    parser.add_argument('--batch-size-eval', type=int, default=100000)
260
261
262
263
264
265
266
    parser.add_argument('--log-every', type=int, default=20)
    parser.add_argument('--eval-every', type=int, default=5)
    parser.add_argument('--lr', type=float, default=0.003)
    parser.add_argument('--dropout', type=float, default=0.5)
    parser.add_argument('--num-workers', type=int, default=0,
        help="Number of sampling processes. Use 0 for no extra process.")
    parser.add_argument('--local_rank', type=int, help='get rank of the process')
267
    parser.add_argument('--standalone', action='store_true', help='run in the standalone mode')
268
269
270
    args = parser.parse_args()

    print(args)
271
    main(args)