node_classification.py 13.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
"""
This script trains and tests a GraphSAGE model for node classification
on large graphs using GraphBolt dataloader.

Paper: [Inductive Representation Learning on Large Graphs]
(https://arxiv.org/abs/1706.02216)

Unlike previous dgl examples, we've utilized the newly defined dataloader
from GraphBolt. This example will help you grasp how to build an end-to-end
training pipeline using GraphBolt.

Before reading this example, please familiar yourself with graphsage node
classification by reading the example in the
`examples/core/graphsage/node_classification.py`. This introduction,
[A Blitz Introduction to Node Classification with DGL]
(https://docs.dgl.ai/tutorials/blitz/1_introduction.html), might be helpful.

If you want to train graphsage on a large graph in a distributed fashion,
please read the example in the `examples/distributed/graphsage/`.

This flowchart describes the main functional sequence of the provided example:
main

├───> OnDiskDataset pre-processing

├───> Instantiate SAGE model

├───> train
│     │
│     ├───> Get graphbolt dataloader (HIGHLIGHT)
│     │
│     └───> Training loop
│           │
│           ├───> SAGE.forward
│           │
│           └───> Validation set evaluation

38
└───> All nodes set inference & Test set evaluation
39
40
"""
import argparse
41
import time
42
43
44
45
46
47
48

import dgl.graphbolt as gb
import dgl.nn as dglnn
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchmetrics.functional as MF
49
from tqdm import tqdm
50
51


52
def create_dataloader(args, graph, features, itemset, job):
53
54
55
56
57
58
    """
    [HIGHLIGHT]
    Get a GraphBolt version of a dataloader for node classification tasks.
    This function demonstrates how to utilize functional forms of datapipes in
    GraphBolt.
    Alternatively, you can create a datapipe using its class constructor.
59
60
61
62
63
64
65
66
67
68
69

    Parameters
    ----------
    args : Namespace
        The arguments parsed by `parser.parse_args()`.
    graph : SamplingGraph
        The network topology for sampling.
    features : FeatureStore
        The node features.
    itemset : Union[ItemSet, ItemSetDict]
        Data to be sampled.
70
    job : one of ["train", "evaluate", "infer"]
71
72
        The stage where dataloader is created, with options "train", "evaluate"
        and "infer".
73
74
75
76
77
78
79
80
81
82
83
    """

    ############################################################################
    # [Step-1]:
    # gb.ItemSampler()
    # [Input]:
    # 'itemset': The current dataset. (e.g. `train_set` or `valid_set`)
    # 'args.batch_size': Specify the number of samples to be processed together,
    # referred to as a 'mini-batch'. (The term 'mini-batch' is used here to
    # indicate a subset of the entire dataset that is processed together. This
    # is in contrast to processing the entire dataset, known as a 'full batch'.)
84
    # 'job': Determines whether data should be shuffled. (Shuffling is
85
86
87
88
89
90
91
92
93
    # generally used only in training to improve model generalization. It's
    # not used in validation and testing as the focus there is to evaluate
    # performance rather than to learn from the data.)
    # [Output]:
    # An ItemSampler object for handling mini-batch sampling.
    # [Role]:
    # Initialize the ItemSampler to sample mini-batche from the dataset.
    ############################################################################
    datapipe = gb.ItemSampler(
94
        itemset, batch_size=args.batch_size, shuffle=(job == "train")
95
96
97
98
99
100
101
    )

    ############################################################################
    # [Step-2]:
    # self.sample_neighbor()
    # [Input]:
    # 'graph': The network topology for sampling.
102
103
104
105
    # '[-1] or args.fanout': Number of neighbors to sample per node. In
    # training or validation, the length of args.fanout should be equal to the
    # number of layers in the model. In inference, this parameter is set to
    # [-1], indicating that all neighbors of a node are sampled.
106
107
108
109
110
    # [Output]:
    # A NeighborSampler object to sample neighbors.
    # [Role]:
    # Initialize a neighbor sampler for sampling the neighborhoods of nodes.
    ############################################################################
111
112
113
    datapipe = datapipe.sample_neighbor(
        graph, args.fanout if job != "infer" else [-1]
    )
114
115
116
117
118
119
120
121
122
123
124

    ############################################################################
    # [Step-3]:
    # self.fetch_feature()
    # [Input]:
    # 'features': The node features.
    # 'node_feature_keys': The keys of the node features to be fetched.
    # [Output]:
    # A FeatureFetcher object to fetch node features.
    # [Role]:
    # Initialize a feature fetcher for fetching features of the sampled
125
126
    # subgraphs. This step is skipped in inference because features are updated
    # as a whole during it, thus storing features in minibatch is unnecessary.
127
    ############################################################################
128
129
    if job != "infer":
        datapipe = datapipe.fetch_feature(features, node_feature_keys=["feat"])
130
131
132

    ############################################################################
    # [Step-4]:
133
134
135
136
137
138
139
140
141
142
143
144
    # self.to_dgl()
    # [Input]:
    # 'datapipe': The previous datapipe object.
    # [Output]:
    # A DGLMiniBatch used for computing.
    # [Role]:
    # Convert a mini-batch to dgl-minibatch.
    ############################################################################
    datapipe = datapipe.to_dgl()

    ############################################################################
    # [Step-5]:
145
146
147
148
149
150
151
152
153
154
    # self.copy_to()
    # [Input]:
    # 'device': The device to copy the data to.
    # [Output]:
    # A CopyTo object to copy the data to the specified device.
    ############################################################################
    datapipe = datapipe.copy_to(device=args.device)

    ############################################################################
    # [Step-6]:
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
    # gb.MultiProcessDataLoader()
    # [Input]:
    # 'datapipe': The datapipe object to be used for data loading.
    # 'args.num_workers': The number of processes to be used for data loading.
    # [Output]:
    # A MultiProcessDataLoader object to handle data loading.
    # [Role]:
    # Initialize a multi-process dataloader to load the data in parallel.
    ############################################################################
    dataloader = gb.MultiProcessDataLoader(
        datapipe, num_workers=args.num_workers
    )

    # Return the fully-initialized DataLoader object.
    return dataloader


172
173
174
175
176
177
178
179
180
181
182
183
class SAGE(nn.Module):
    def __init__(self, in_size, hidden_size, out_size):
        super().__init__()
        self.layers = nn.ModuleList()
        # Three-layer GraphSAGE-mean.
        self.layers.append(dglnn.SAGEConv(in_size, hidden_size, "mean"))
        self.layers.append(dglnn.SAGEConv(hidden_size, hidden_size, "mean"))
        self.layers.append(dglnn.SAGEConv(hidden_size, out_size, "mean"))
        self.dropout = nn.Dropout(0.5)
        self.hidden_size = hidden_size
        self.out_size = out_size
        # Set the dtype for the layers manually.
184
        self.set_layer_dtype(torch.float32)
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

    def set_layer_dtype(self, _dtype):
        for layer in self.layers:
            for param in layer.parameters():
                param.data = param.data.to(_dtype)

    def forward(self, blocks, x):
        hidden_x = x
        for layer_idx, (layer, block) in enumerate(zip(self.layers, blocks)):
            hidden_x = layer(block, hidden_x)
            is_last_layer = layer_idx == len(self.layers) - 1
            if not is_last_layer:
                hidden_x = F.relu(hidden_x)
                hidden_x = self.dropout(hidden_x)
        return hidden_x

201
    def inference(self, graph, features, dataloader, device):
202
203
204
        """Conduct layer-wise inference to get all the node embeddings."""
        feature = features.read("node", None, "feat")

205
206
207
208
209
        buffer_device = torch.device("cpu")
        # Enable pin_memory for faster CPU to GPU data transfer if the
        # model is running on a GPU.
        pin_memory = buffer_device != device

210
211
212
213
214
215
216
        for layer_idx, layer in enumerate(self.layers):
            is_last_layer = layer_idx == len(self.layers) - 1

            y = torch.empty(
                graph.total_num_nodes,
                self.out_size if is_last_layer else self.hidden_size,
                dtype=torch.float64,
217
218
                device=buffer_device,
                pin_memory=pin_memory,
219
            )
220
            feature = feature.to(device)
221

222
            for step, data in tqdm(enumerate(dataloader)):
223
                x = feature[data.input_nodes]
224
                hidden_x = layer(data.blocks[0], x.float())  # len(blocks) = 1
225
226
227
228
                if not is_last_layer:
                    hidden_x = F.relu(hidden_x)
                    hidden_x = self.dropout(hidden_x)
                # By design, our output nodes are contiguous.
229
230
231
                y[
                    data.output_nodes[0] : data.output_nodes[-1] + 1
                ] = hidden_x.to(buffer_device)
232
233
234
235
236
237
238
239
240
241
242
243
244
            feature = y

        return y


@torch.no_grad()
def layerwise_infer(
    args, graph, features, test_set, all_nodes_set, model, num_classes
):
    model.eval()
    dataloader = create_dataloader(
        args, graph, features, all_nodes_set, job="infer"
    )
245
    pred = model.inference(graph, features, dataloader, args.device)
246
247
248
249
250
251
252
253
254
255
256
    pred = pred[test_set._items[0]]
    label = test_set._items[1].to(pred.device)

    return MF.accuracy(
        pred,
        label,
        task="multiclass",
        num_classes=num_classes,
    )


257
258
259
260
261
262
@torch.no_grad()
def evaluate(args, model, graph, features, itemset, num_classes):
    model.eval()
    y = []
    y_hats = []
    dataloader = create_dataloader(
263
        args, graph, features, itemset, job="evaluate"
264
265
    )

266
    for step, data in tqdm(enumerate(dataloader)):
267
268
        x = data.node_features["feat"]
        y.append(data.labels)
269
        y_hats.append(model(data.blocks, x.float()))
270

271
    return MF.accuracy(
272
273
274
275
276
277
278
279
280
281
        torch.cat(y_hats),
        torch.cat(y),
        task="multiclass",
        num_classes=num_classes,
    )


def train(args, graph, features, train_set, valid_set, num_classes, model):
    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
    dataloader = create_dataloader(
282
        args, graph, features, train_set, job="train"
283
284
    )

285
    for epoch in range(args.epochs):
286
        t0 = time.time()
287
288
        model.train()
        total_loss = 0
289
        for step, data in enumerate(dataloader):
290
291
292
293
294
295
296
297
            # The input features from the source nodes in the first layer's
            # computation graph.
            x = data.node_features["feat"]

            # The ground truth labels from the destination nodes
            # in the last layer's computation graph.
            y = data.labels

298
            y_hat = model(data.blocks, x.float())
299
300
301
302
303
304
305
306
307
308

            # Compute loss.
            loss = F.cross_entropy(y_hat, y)

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            total_loss += loss.item()

309
        t1 = time.time()
310
311
312
313
        # Evaluate the model.
        acc = evaluate(args, model, graph, features, valid_set, num_classes)
        print(
            f"Epoch {epoch:05d} | Loss {total_loss / (step + 1):.4f} | "
314
            f"Accuracy {acc.item():.4f} | Time {t1 - t0:.4f}"
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
        )


def parse_args():
    parser = argparse.ArgumentParser(
        description="A script trains and tests a GraphSAGE model "
        "for node classification using GraphBolt dataloader."
    )
    parser.add_argument(
        "--epochs", type=int, default=10, help="Number of training epochs."
    )
    parser.add_argument(
        "--lr",
        type=float,
        default=0.0005,
        help="Learning rate for optimization.",
    )
    parser.add_argument(
333
        "--batch-size", type=int, default=1024, help="Batch size for training."
334
335
336
337
    )
    parser.add_argument(
        "--num-workers",
        type=int,
338
        default=0,
339
340
341
342
343
        help="Number of workers for data loading.",
    )
    parser.add_argument(
        "--fanout",
        type=str,
344
        default="10,10,10",
345
        help="Fan-out of neighbor sampling. It is IMPORTANT to keep len(fanout)"
346
        " identical with the number of layers in your model. Default: 10,10,10",
347
    )
348
349
350
351
352
353
    parser.add_argument(
        "--device",
        default="cpu",
        choices=["cpu", "cuda"],
        help="Train device: 'cpu' for CPU, 'cuda' for GPU.",
    )
354
355
356
357
    return parser.parse_args()


def main(args):
358
359
360
361
362
    if not torch.cuda.is_available():
        args.device = "cpu"
    print(f"Training in {args.device} mode.")
    args.device = torch.device(args.device)

363
    # Load and preprocess dataset.
364
    print("Loading data...")
365
366
367
    dataset = gb.BuiltinDataset("ogbn-products").load()

    graph = dataset.graph
368
369
    # Currently the neighbor-sampling process can only be done on the CPU,
    # therefore there is no need to copy the graph to the GPU.
370
371
372
    features = dataset.feature
    train_set = dataset.tasks[0].train_set
    valid_set = dataset.tasks[0].validation_set
373
374
    test_set = dataset.tasks[0].test_set
    all_nodes_set = dataset.all_nodes_set
375
376
377
378
    args.fanout = list(map(int, args.fanout.split(",")))

    num_classes = dataset.tasks[0].metadata["num_classes"]

379
    in_size = features.size("node", None, "feat")[0]
380
    hidden_size = 256
381
382
383
    out_size = num_classes

    model = SAGE(in_size, hidden_size, out_size)
384
385
    assert len(args.fanout) == len(model.layers)
    model = model.to(args.device)
386
387
388
389
390
391
392

    # Model training.
    print("Training...")
    train(args, graph, features, train_set, valid_set, num_classes, model)

    # Test the model.
    print("Testing...")
393
394
395
396
397
398
399
400
    test_acc = layerwise_infer(
        args,
        graph,
        features,
        test_set,
        all_nodes_set,
        model,
        num_classes,
401
    )
402
    print(f"Test accuracy {test_acc.item():.4f}")
403
404
405
406
407


if __name__ == "__main__":
    args = parse_args()
    main(args)