csc_sampling_graph.cc 20.6 KB
Newer Older
1
2
/**
 *  Copyright (c) 2023 by Contributors
3
 * @file csc_sampling_graph.cc
4
5
6
 * @brief Source file of sampling graph.
 */

7
8
#include <graphbolt/csc_sampling_graph.h>
#include <graphbolt/serialize.h>
9
10
11
12
#include <torch/torch.h>

#include <tuple>
#include <vector>
13

14
#include "./random.h"
15
16
#include "./shared_memory_utils.h"

17
18
19
20
namespace graphbolt {
namespace sampling {

CSCSamplingGraph::CSCSamplingGraph(
21
    const torch::Tensor& indptr, const torch::Tensor& indices,
22
    const torch::optional<torch::Tensor>& node_type_offset,
23
24
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<EdgeAttrMap>& edge_attributes)
25
    : indptr_(indptr),
26
      indices_(indices),
27
      node_type_offset_(node_type_offset),
28
29
      type_per_edge_(type_per_edge),
      edge_attributes_(edge_attributes) {
30
31
32
33
34
35
  TORCH_CHECK(indptr.dim() == 1);
  TORCH_CHECK(indices.dim() == 1);
  TORCH_CHECK(indptr.device() == indices.device());
}

c10::intrusive_ptr<CSCSamplingGraph> CSCSamplingGraph::FromCSC(
36
    const torch::Tensor& indptr, const torch::Tensor& indices,
37
    const torch::optional<torch::Tensor>& node_type_offset,
38
39
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<EdgeAttrMap>& edge_attributes) {
40
41
42
43
44
45
46
47
  if (node_type_offset.has_value()) {
    auto& offset = node_type_offset.value();
    TORCH_CHECK(offset.dim() == 1);
  }
  if (type_per_edge.has_value()) {
    TORCH_CHECK(type_per_edge.value().dim() == 1);
    TORCH_CHECK(type_per_edge.value().size(0) == indices.size(0));
  }
48
49
50
51
52
  if (edge_attributes.has_value()) {
    for (const auto& pair : edge_attributes.value()) {
      TORCH_CHECK(pair.value().size(0) == indices.size(0));
    }
  }
53
  return c10::make_intrusive<CSCSamplingGraph>(
54
      indptr, indices, node_type_offset, type_per_edge, edge_attributes);
55
56
}

57
void CSCSamplingGraph::Load(torch::serialize::InputArchive& archive) {
58
59
  const int64_t magic_num =
      read_from_archive(archive, "CSCSamplingGraph/magic_num").toInt();
60
61
62
  TORCH_CHECK(
      magic_num == kCSCSamplingGraphSerializeMagic,
      "Magic numbers mismatch when loading CSCSamplingGraph.");
63
64
  indptr_ = read_from_archive(archive, "CSCSamplingGraph/indptr").toTensor();
  indices_ = read_from_archive(archive, "CSCSamplingGraph/indices").toTensor();
65
66
67
68
69
70
71
72
73
74
75
  if (read_from_archive(archive, "CSCSamplingGraph/has_node_type_offset")
          .toBool()) {
    node_type_offset_ =
        read_from_archive(archive, "CSCSamplingGraph/node_type_offset")
            .toTensor();
  }
  if (read_from_archive(archive, "CSCSamplingGraph/has_type_per_edge")
          .toBool()) {
    type_per_edge_ =
        read_from_archive(archive, "CSCSamplingGraph/type_per_edge").toTensor();
  }
76
77
78
}

void CSCSamplingGraph::Save(torch::serialize::OutputArchive& archive) const {
79
  archive.write("CSCSamplingGraph/magic_num", kCSCSamplingGraphSerializeMagic);
80
81
  archive.write("CSCSamplingGraph/indptr", indptr_);
  archive.write("CSCSamplingGraph/indices", indices_);
82
83
84
85
86
87
88
89
90
91
92
  archive.write(
      "CSCSamplingGraph/has_node_type_offset", node_type_offset_.has_value());
  if (node_type_offset_) {
    archive.write(
        "CSCSamplingGraph/node_type_offset", node_type_offset_.value());
  }
  archive.write(
      "CSCSamplingGraph/has_type_per_edge", type_per_edge_.has_value());
  if (type_per_edge_) {
    archive.write("CSCSamplingGraph/type_per_edge", type_per_edge_.value());
  }
93
94
}

95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
c10::intrusive_ptr<SampledSubgraph> CSCSamplingGraph::InSubgraph(
    const torch::Tensor& nodes) const {
  using namespace torch::indexing;
  const int32_t kDefaultGrainSize = 100;
  torch::Tensor indptr = torch::zeros_like(indptr_);
  const size_t num_seeds = nodes.size(0);
  std::vector<torch::Tensor> indices_arr(num_seeds);
  std::vector<torch::Tensor> edge_ids_arr(num_seeds);
  std::vector<torch::Tensor> type_per_edge_arr(num_seeds);
  torch::parallel_for(
      0, num_seeds, kDefaultGrainSize, [&](size_t start, size_t end) {
        for (size_t i = start; i < end; ++i) {
          const int64_t node_id = nodes[i].item<int64_t>();
          const int64_t start_idx = indptr_[node_id].item<int64_t>();
          const int64_t end_idx = indptr_[node_id + 1].item<int64_t>();
          indptr[node_id + 1] = end_idx - start_idx;
          indices_arr[i] = indices_.slice(0, start_idx, end_idx);
          edge_ids_arr[i] = torch::arange(start_idx, end_idx);
          if (type_per_edge_) {
            type_per_edge_arr[i] =
                type_per_edge_.value().slice(0, start_idx, end_idx);
          }
        }
      });

  const auto& nonzero_idx = torch::nonzero(indptr).reshape(-1);
  torch::Tensor compact_indptr =
      torch::zeros({nonzero_idx.size(0) + 1}, indptr_.dtype());
  compact_indptr.index_put_({Slice(1, None)}, indptr.index({nonzero_idx}));
  return c10::make_intrusive<SampledSubgraph>(
125
      compact_indptr.cumsum(0), torch::cat(indices_arr), nonzero_idx - 1,
126
127
128
129
130
131
      torch::arange(0, NumNodes()), torch::cat(edge_ids_arr),
      type_per_edge_
          ? torch::optional<torch::Tensor>{torch::cat(type_per_edge_arr)}
          : torch::nullopt);
}

132
c10::intrusive_ptr<SampledSubgraph> CSCSamplingGraph::SampleNeighbors(
133
    const torch::Tensor& nodes, const std::vector<int64_t>& fanouts,
134
135
    bool replace, bool return_eids,
    torch::optional<torch::Tensor> probs_or_mask) const {
136
  const int64_t num_nodes = nodes.size(0);
137
138
139
140
141
142
143
144
  // Note probs will be passed as input for 'torch.multinomial' in deeper stack,
  // which doesn't support 'torch.half' and 'torch.bool' data types. To avoid
  // crashes, convert 'probs_or_mask' to 'float32' data type.
  if (probs_or_mask.has_value() &&
      (probs_or_mask.value().dtype() == torch::kBool ||
       probs_or_mask.value().dtype() == torch::kFloat16)) {
    probs_or_mask = probs_or_mask.value().to(torch::kFloat32);
  }
145
146
147
  // If true, perform sampling for each edge type of each node, otherwise just
  // sample once for each node with no regard of edge types.
  bool consider_etype = (fanouts.size() > 1);
148
149
150
151
  std::vector<torch::Tensor> picked_neighbors_per_node(num_nodes);
  torch::Tensor num_picked_neighbors_per_node =
      torch::zeros({num_nodes + 1}, indptr_.options());

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
  AT_DISPATCH_INTEGRAL_TYPES(
      indptr_.scalar_type(), "parallel_for", ([&] {
        torch::parallel_for(0, num_nodes, 32, [&](scalar_t b, scalar_t e) {
          const scalar_t* indptr_data = indptr_.data_ptr<scalar_t>();
          for (scalar_t i = b; i < e; ++i) {
            const auto nid = nodes[i].item<int64_t>();
            TORCH_CHECK(
                nid >= 0 && nid < NumNodes(),
                "The seed nodes' IDs should fall within the range of the "
                "graph's node IDs.");
            const auto offset = indptr_data[nid];
            const auto num_neighbors = indptr_data[nid + 1] - offset;

            if (num_neighbors == 0) {
              // Initialization is performed here because all tensors will be
              // concatenated in the master thread, and having an undefined
              // tensor during concatenation can result in a crash.
              picked_neighbors_per_node[i] =
                  torch::tensor({}, indptr_.options());
              continue;
            }

            if (consider_etype) {
              picked_neighbors_per_node[i] = PickByEtype(
                  offset, num_neighbors, fanouts, replace, indptr_.options(),
                  type_per_edge_.value(), probs_or_mask);
            } else {
              picked_neighbors_per_node[i] = Pick(
                  offset, num_neighbors, fanouts[0], replace, indptr_.options(),
                  probs_or_mask);
            }
            num_picked_neighbors_per_node[i + 1] =
                picked_neighbors_per_node[i].size(0);
          }
        });  // End of the thread.
      }));
188
189
190
191
192
193
194

  torch::Tensor subgraph_indptr =
      torch::cumsum(num_picked_neighbors_per_node, 0);

  torch::Tensor picked_eids = torch::cat(picked_neighbors_per_node);
  torch::Tensor subgraph_indices =
      torch::index_select(indices_, 0, picked_eids);
195
  torch::optional<torch::Tensor> subgraph_type_per_edge = torch::nullopt;
196
  if (type_per_edge_.has_value()) {
197
198
    subgraph_type_per_edge =
        torch::index_select(type_per_edge_.value(), 0, picked_eids);
199
  }
200
201
  torch::optional<torch::Tensor> subgraph_reverse_edge_ids = torch::nullopt;
  if (return_eids) subgraph_reverse_edge_ids = std::move(picked_eids);
202
  return c10::make_intrusive<SampledSubgraph>(
203
      subgraph_indptr, subgraph_indices, nodes, torch::nullopt,
204
      subgraph_reverse_edge_ids, subgraph_type_per_edge);
205
206
}

207
208
209
210
211
212
213
214
215
216
217
218
std::tuple<torch::Tensor, torch::Tensor>
CSCSamplingGraph::SampleNegativeEdgesUniform(
    const std::tuple<torch::Tensor, torch::Tensor>& node_pairs,
    int64_t negative_ratio, int64_t max_node_id) const {
  torch::Tensor pos_src;
  std::tie(pos_src, std::ignore) = node_pairs;
  auto neg_len = pos_src.size(0) * negative_ratio;
  auto neg_src = pos_src.repeat(negative_ratio);
  auto neg_dst = torch::randint(0, max_node_id, {neg_len}, pos_src.options());
  return std::make_tuple(neg_src, neg_dst);
}

219
220
221
222
223
224
225
226
c10::intrusive_ptr<CSCSamplingGraph>
CSCSamplingGraph::BuildGraphFromSharedMemoryTensors(
    std::tuple<
        SharedMemoryPtr, SharedMemoryPtr,
        std::vector<torch::optional<torch::Tensor>>>&& shared_memory_tensors) {
  auto& optional_tensors = std::get<2>(shared_memory_tensors);
  auto graph = c10::make_intrusive<CSCSamplingGraph>(
      optional_tensors[0].value(), optional_tensors[1].value(),
227
      optional_tensors[2], optional_tensors[3], torch::nullopt);
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
  graph->tensor_meta_shm_ = std::move(std::get<0>(shared_memory_tensors));
  graph->tensor_data_shm_ = std::move(std::get<1>(shared_memory_tensors));
  return graph;
}

c10::intrusive_ptr<CSCSamplingGraph> CSCSamplingGraph::CopyToSharedMemory(
    const std::string& shared_memory_name) {
  auto optional_tensors = std::vector<torch::optional<torch::Tensor>>{
      indptr_, indices_, node_type_offset_, type_per_edge_};
  auto shared_memory_tensors = CopyTensorsToSharedMemory(
      shared_memory_name, optional_tensors, SERIALIZED_METAINFO_SIZE_MAX);
  return BuildGraphFromSharedMemoryTensors(std::move(shared_memory_tensors));
}

c10::intrusive_ptr<CSCSamplingGraph> CSCSamplingGraph::LoadFromSharedMemory(
    const std::string& shared_memory_name) {
  auto shared_memory_tensors = LoadTensorsFromSharedMemory(
      shared_memory_name, SERIALIZED_METAINFO_SIZE_MAX);
  return BuildGraphFromSharedMemoryTensors(std::move(shared_memory_tensors));
}

249
250
251
252
253
254
255
256
257
258
259
260
261
/**
 * @brief Perform uniform sampling of elements and return the sampled indices.
 *
 * @param offset The starting edge ID for the connected neighbors of the sampled
 * node.
 * @param num_neighbors The number of neighbors to pick.
 * @param fanout The number of edges to be sampled for each node. It should be
 * >= 0 or -1.
 *  - When the value is -1, all neighbors will be chosen for sampling. It is
 * equivalent to selecting all neighbors with non-zero probability when the
 * fanout is >= the number of neighbors (and replacement is set to false).
 *  - When the value is a non-negative integer, it serves as a minimum
 * threshold for selecting neighbors.
262
 * @param replace Boolean indicating whether the sample is performed with or
263
264
265
266
267
268
269
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param options Tensor options specifying the desired data type of the result.
 *
 * @return A tensor containing the picked neighbors.
 */
inline torch::Tensor UniformPick(
270
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
271
272
    const torch::TensorOptions& options) {
  torch::Tensor picked_neighbors;
273
  if ((fanout == -1) || (num_neighbors <= fanout && !replace)) {
274
    picked_neighbors = torch::arange(offset, offset + num_neighbors, options);
275
276
277
  } else if (replace) {
    picked_neighbors =
        torch::randint(offset, offset + num_neighbors, {fanout}, options);
278
  } else {
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
    picked_neighbors = torch::empty({fanout}, options);
    AT_DISPATCH_INTEGRAL_TYPES(
        picked_neighbors.scalar_type(), "UniformPick", ([&] {
          scalar_t* picked_neighbors_data =
              picked_neighbors.data_ptr<scalar_t>();
          // We use different sampling strategies for different sampling case.
          if (fanout >= num_neighbors / 10) {
            // [Algorithm]
            // This algorithm is conceptually related to the Fisher-Yates
            // shuffle.
            //
            // [Complexity Analysis]
            // This algorithm's memory complexity is O(num_neighbors), but
            // it generates fewer random numbers (O(fanout)).
            //
            // (Compare) Reservoir algorithm is one of the most classical
            // sampling algorithms. Both the reservoir algorithm and our
            // algorithm offer distinct advantages, we need to compare to
            // illustrate our trade-offs.
            // The reservoir algorithm is memory-efficient (O(fanout)) but
            // creates many random numbers (O(num_neighbors)), which is
            // costly.
            //
            // [Practical Consideration]
            // Use this algorithm when `fanout >= num_neighbors / 10` to
            // reduce computation.
            // In this scenarios above, memory complexity is not a concern due
            // to the small size of both `fanout` and `num_neighbors`. And it
            // is efficient to allocate a small amount of memory. So the
            // algorithm performence is great in this case.
            std::vector<scalar_t> seq(num_neighbors);
            // Assign the seq with [offset, offset + num_neighbors].
            std::iota(seq.begin(), seq.end(), offset);
            for (int64_t i = 0; i < fanout; ++i) {
              auto j = RandomEngine::ThreadLocal()->RandInt(i, num_neighbors);
              std::swap(seq[i], seq[j]);
            }
            // Save the randomly sampled fanout elements to the output tensor.
            std::copy(seq.begin(), seq.begin() + fanout, picked_neighbors_data);
          } else if (fanout < 64) {
            // [Algorithm]
            // Use linear search to verify uniqueness.
            //
            // [Complexity Analysis]
            // Since the set of numbers is small (up to 64), so it is more
            // cost-effective for the CPU to use this algorithm.
            auto begin = picked_neighbors_data;
            auto end = picked_neighbors_data + fanout;

            while (begin != end) {
              // Put the new random number in the last position.
              *begin = RandomEngine::ThreadLocal()->RandInt(
                  offset, offset + num_neighbors);
              // Check if a new value doesn't exist in current
              // range(picked_neighbors_data, begin). Otherwise get a new
              // value until we haven't unique range of elements.
              auto it = std::find(picked_neighbors_data, begin, *begin);
              if (it == begin) ++begin;
            }
          } else {
            // [Algorithm]
            // Use hash-set to verify uniqueness. In the best scenario, the
            // time complexity is O(fanout), assuming no conflicts occur.
            //
            // [Complexity Analysis]
            // Let K = (fanout / num_neighbors), the expected number of extra
            // sampling steps is roughly K^2 / (1-K) * num_neighbors, which
            // means in the worst case scenario, the time complexity is
            // O(num_neighbors^2).
            //
            // [Practical Consideration]
            // In practice, we set the threshold K to 1/10. This trade-off is
            // due to the slower performance of std::unordered_set, which
            // would otherwise increase the sampling cost. By doing so, we
            // achieve a balance between theoretical efficiency and practical
            // performance.
            std::unordered_set<scalar_t> picked_set;
            while (static_cast<int64_t>(picked_set.size()) < fanout) {
              picked_set.insert(RandomEngine::ThreadLocal()->RandInt(
                  offset, offset + num_neighbors));
            }
            std::copy(
                picked_set.begin(), picked_set.end(), picked_neighbors_data);
          }
        }));
364
365
366
367
  }
  return picked_neighbors;
}

368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
/**
 * @brief Perform non-uniform sampling of elements based on probabilities and
 * return the sampled indices.
 *
 * If 'probs_or_mask' is provided, it indicates that the sampling is
 * non-uniform. In such cases:
 * - When the number of neighbors with non-zero probability is less than or
 * equal to fanout, all neighbors with non-zero probability will be selected.
 * - When the number of neighbors with non-zero probability exceeds fanout, the
 * sampling process will select 'fanout' elements based on their respective
 * probabilities. Higher probabilities will increase the chances of being chosen
 * during the sampling process.
 *
 * @param offset The starting edge ID for the connected neighbors of the sampled
 * node.
 * @param num_neighbors The number of neighbors to pick.
 * @param fanout The number of edges to be sampled for each node. It should be
 * >= 0 or -1.
 *  - When the value is -1, all neighbors will be chosen for sampling. It is
 * equivalent to selecting all neighbors with non-zero probability when the
 * fanout is >= the number of neighbors (and replacement is set to false).
 *  - When the value is a non-negative integer, it serves as a minimum
 * threshold for selecting neighbors.
391
 * @param replace Boolean indicating whether the sample is performed with or
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param options Tensor options specifying the desired data type of the result.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
 *
 * @return A tensor containing the picked neighbors.
 */
inline torch::Tensor NonUniformPick(
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
    const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& probs_or_mask) {
  torch::Tensor picked_neighbors;
  auto local_probs =
      probs_or_mask.value().slice(0, offset, offset + num_neighbors);
  auto positive_probs_indices = local_probs.nonzero().squeeze(1);
  auto num_positive_probs = positive_probs_indices.size(0);
  if (num_positive_probs == 0) return torch::tensor({}, options);
  if ((fanout == -1) || (num_positive_probs <= fanout && !replace)) {
    picked_neighbors = torch::arange(offset, offset + num_neighbors, options);
    picked_neighbors =
        torch::index_select(picked_neighbors, 0, positive_probs_indices);
  } else {
    if (!replace) fanout = std::min(fanout, num_positive_probs);
    picked_neighbors =
        torch::multinomial(local_probs, fanout, replace) + offset;
  }
  return picked_neighbors;
}

torch::Tensor Pick(
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
    const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& probs_or_mask) {
  if (probs_or_mask.has_value()) {
    return NonUniformPick(
        offset, num_neighbors, fanout, replace, options, probs_or_mask);
  } else {
    return UniformPick(offset, num_neighbors, fanout, replace, options);
  }
}

436
437
438
torch::Tensor PickByEtype(
    int64_t offset, int64_t num_neighbors, const std::vector<int64_t>& fanouts,
    bool replace, const torch::TensorOptions& options,
439
440
    const torch::Tensor& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask) {
441
442
443
444
  std::vector<torch::Tensor> picked_neighbors(
      fanouts.size(), torch::tensor({}, options));
  int64_t etype_begin = offset;
  int64_t etype_end = offset;
445
446
447
  AT_DISPATCH_INTEGRAL_TYPES(
      type_per_edge.scalar_type(), "PickByEtype", ([&] {
        const scalar_t* type_per_edge_data = type_per_edge.data_ptr<scalar_t>();
448
449
450
        const auto end = offset + num_neighbors;
        while (etype_begin < end) {
          scalar_t etype = type_per_edge_data[etype_begin];
451
452
453
          TORCH_CHECK(
              etype >= 0 && etype < fanouts.size(),
              "Etype values exceed the number of fanouts.");
454
          int64_t fanout = fanouts[etype];
455
456
457
458
          auto etype_end_it = std::upper_bound(
              type_per_edge_data + etype_begin, type_per_edge_data + end,
              etype);
          etype_end = etype_end_it - type_per_edge_data;
459
460
461
462
463
464
465
466
467
          // Do sampling for one etype.
          if (fanout != 0) {
            picked_neighbors[etype] = Pick(
                etype_begin, etype_end - etype_begin, fanout, replace, options,
                probs_or_mask);
          }
          etype_begin = etype_end;
        }
      }));
468
469
470
471

  return torch::cat(picked_neighbors, 0);
}

472
473
}  // namespace sampling
}  // namespace graphbolt