test_serialize.py 11.5 KB
Newer Older
VoVAllen's avatar
VoVAllen committed
1
2
3
4
5
6
import backend as F
import numpy as np
import scipy as sp
import time
import tempfile
import os
7
import pytest
8
import unittest
VoVAllen's avatar
VoVAllen committed
9
10
11

from dgl import DGLGraph
import dgl
12
13
import dgl.ndarray as nd
from dgl.data.utils import save_graphs, load_graphs, load_labels, save_tensors, load_tensors
VoVAllen's avatar
VoVAllen committed
14
15
16
17

np.random.seed(44)


18
def generate_rand_graph(n, is_hetero):
VoVAllen's avatar
VoVAllen committed
19
20
    arr = (sp.sparse.random(n, n, density=0.1,
                            format='coo') != 0).astype(np.int64)
21
22
23
24
    if is_hetero:
        return dgl.graph(arr)
    else:
        return DGLGraph(arr, readonly=True)
VoVAllen's avatar
VoVAllen committed
25
26


27
def construct_graph(n, is_hetero):
VoVAllen's avatar
VoVAllen committed
28
29
    g_list = []
    for i in range(n):
30
        g = generate_rand_graph(30, is_hetero)
VoVAllen's avatar
VoVAllen committed
31
32
33
34
35
36
37
        g.edata['e1'] = F.randn((g.number_of_edges(), 32))
        g.edata['e2'] = F.ones((g.number_of_edges(), 32))
        g.ndata['n1'] = F.randn((g.number_of_nodes(), 64))
        g_list.append(g)
    return g_list


38
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
39
40
@pytest.mark.parametrize('is_hetero', [True, False])
def test_graph_serialize_with_feature(is_hetero):
VoVAllen's avatar
VoVAllen committed
41
42
43
44
    num_graphs = 100

    t0 = time.time()

45
    g_list = construct_graph(num_graphs, is_hetero)
VoVAllen's avatar
VoVAllen committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

    t1 = time.time()

    # create a temporary file and immediately release it so DGL can open it.
    f = tempfile.NamedTemporaryFile(delete=False)
    path = f.name
    f.close()

    save_graphs(path, g_list)

    t2 = time.time()
    idx_list = np.random.permutation(np.arange(num_graphs)).tolist()
    loadg_list, _ = load_graphs(path, idx_list)

    t3 = time.time()
    idx = idx_list[0]
    load_g = loadg_list[0]
    print("Save time: {} s".format(t2 - t1))
    print("Load time: {} s".format(t3 - t2))
    print("Graph Construction time: {} s".format(t1 - t0))

    assert F.allclose(load_g.nodes(), g_list[idx].nodes())

    load_edges = load_g.all_edges('uv', 'eid')
    g_edges = g_list[idx].all_edges('uv', 'eid')
    assert F.allclose(load_edges[0], g_edges[0])
    assert F.allclose(load_edges[1], g_edges[1])
    assert F.allclose(load_g.edata['e1'], g_list[idx].edata['e1'])
    assert F.allclose(load_g.edata['e2'], g_list[idx].edata['e2'])
    assert F.allclose(load_g.ndata['n1'], g_list[idx].ndata['n1'])

    os.unlink(path)


80
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
81
82
@pytest.mark.parametrize('is_hetero', [True, False])
def test_graph_serialize_without_feature(is_hetero):
VoVAllen's avatar
VoVAllen committed
83
    num_graphs = 100
84
    g_list = [generate_rand_graph(30, is_hetero) for _ in range(num_graphs)]
VoVAllen's avatar
VoVAllen committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

    # create a temporary file and immediately release it so DGL can open it.
    f = tempfile.NamedTemporaryFile(delete=False)
    path = f.name
    f.close()

    save_graphs(path, g_list)

    idx_list = np.random.permutation(np.arange(num_graphs)).tolist()
    loadg_list, _ = load_graphs(path, idx_list)

    idx = idx_list[0]
    load_g = loadg_list[0]

    assert F.allclose(load_g.nodes(), g_list[idx].nodes())

    load_edges = load_g.all_edges('uv', 'eid')
    g_edges = g_list[idx].all_edges('uv', 'eid')
    assert F.allclose(load_edges[0], g_edges[0])
    assert F.allclose(load_edges[1], g_edges[1])

    os.unlink(path)

108
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
109
110
@pytest.mark.parametrize('is_hetero', [True, False])
def test_graph_serialize_with_labels(is_hetero):
VoVAllen's avatar
VoVAllen committed
111
    num_graphs = 100
112
    g_list = [generate_rand_graph(30, is_hetero) for _ in range(num_graphs)]
VoVAllen's avatar
VoVAllen committed
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
    labels = {"label": F.zeros((num_graphs, 1))}

    # create a temporary file and immediately release it so DGL can open it.
    f = tempfile.NamedTemporaryFile(delete=False)
    path = f.name
    f.close()

    save_graphs(path, g_list, labels)

    idx_list = np.random.permutation(np.arange(num_graphs)).tolist()
    loadg_list, l_labels0 = load_graphs(path, idx_list)
    l_labels = load_labels(path)
    assert F.allclose(l_labels['label'], labels['label'])
    assert F.allclose(l_labels0['label'], labels['label'])

    idx = idx_list[0]
    load_g = loadg_list[0]

    assert F.allclose(load_g.nodes(), g_list[idx].nodes())

    load_edges = load_g.all_edges('uv', 'eid')
    g_edges = g_list[idx].all_edges('uv', 'eid')
    assert F.allclose(load_edges[0], g_edges[0])
    assert F.allclose(load_edges[1], g_edges[1])

    os.unlink(path)


141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
def test_serialize_tensors():
    # create a temporary file and immediately release it so DGL can open it.
    f = tempfile.NamedTemporaryFile(delete=False)
    path = f.name
    f.close()

    tensor_dict = {"a": F.tensor(
        [1, 3, -1, 0], dtype=F.int64), "1@1": F.tensor([1.5, 2], dtype=F.float32)}

    save_tensors(path, tensor_dict)

    load_tensor_dict = load_tensors(path)

    for key in tensor_dict:
        assert key in load_tensor_dict
        assert np.array_equal(
            F.asnumpy(load_tensor_dict[key]), F.asnumpy(tensor_dict[key]))

    load_nd_dict = load_tensors(path, return_dgl_ndarray=True)

    for key in tensor_dict:
        assert key in load_nd_dict
        assert isinstance(load_nd_dict[key], nd.NDArray)
        assert np.array_equal(
            load_nd_dict[key].asnumpy(), F.asnumpy(tensor_dict[key]))

    os.unlink(path)

169

170
171
172
173
174
175
176
177
178
179
180
181
def test_serialize_empty_dict():
    # create a temporary file and immediately release it so DGL can open it.
    f = tempfile.NamedTemporaryFile(delete=False)
    path = f.name
    f.close()

    tensor_dict = {}

    save_tensors(path, tensor_dict)

    load_tensor_dict = load_tensors(path)
    assert isinstance(load_tensor_dict, dict)
182
    assert len(load_tensor_dict) == 0
183
184

    os.unlink(path)
185

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

def test_load_old_files1():
    loadg_list, _ = load_graphs(os.path.join(
        os.path.dirname(__file__), "data/1.bin"))
    idx, num_nodes, edge0, edge1, edata_e1, edata_e2, ndata_n1 = np.load(
        os.path.join(os.path.dirname(__file__), "data/1.npy"), allow_pickle=True)

    load_g = loadg_list[idx]
    load_edges = load_g.all_edges('uv', 'eid')

    assert np.allclose(F.asnumpy(load_edges[0]), edge0)
    assert np.allclose(F.asnumpy(load_edges[1]), edge1)
    assert np.allclose(F.asnumpy(load_g.edata['e1']), edata_e1)
    assert np.allclose(F.asnumpy(load_g.edata['e2']), edata_e2)
    assert np.allclose(F.asnumpy(load_g.ndata['n1']), ndata_n1)


def test_load_old_files2():
    loadg_list, labels0 = load_graphs(os.path.join(
        os.path.dirname(__file__), "data/2.bin"))
    labels1 = load_labels(os.path.join(
        os.path.dirname(__file__), "data/2.bin"))
    idx, edges0, edges1, np_labels = np.load(os.path.join(
        os.path.dirname(__file__), "data/2.npy"), allow_pickle=True)
    assert np.allclose(F.asnumpy(labels0['label']), np_labels)
    assert np.allclose(F.asnumpy(labels1['label']), np_labels)

    load_g = loadg_list[idx]
    load_edges = load_g.all_edges('uv', 'eid')
    assert np.allclose(F.asnumpy(load_edges[0]), edges0)
    assert np.allclose(F.asnumpy(load_edges[1]), edges1)


219
def create_heterographs(idtype):
220
    g_x = dgl.graph(([0, 1, 2], [1, 2, 3]), 'user',
221
222
                    'follows', idtype=idtype)
    g_y = dgl.graph(([0, 2], [2, 3]), 'user', 'knows', idtype=idtype).formats('csr')
223
224
225
226
227
228
229
    g_x.nodes['user'].data['h'] = F.randn((4, 3))
    g_x.edges['follows'].data['w'] = F.randn((3, 2))
    g_y.nodes['user'].data['hh'] = F.ones((4, 5))
    g_y.edges['knows'].data['ww'] = F.randn((2, 10))
    g = dgl.hetero_from_relations([g_x, g_y])
    return [g, g_x, g_y]

230
def create_heterographs2(idtype):
231
    g_x = dgl.graph(([0, 1, 2], [1, 2, 3]), 'user',
232
233
234
                    'follows', idtype=idtype)
    g_y = dgl.graph(([0, 2], [2, 3]), 'user', 'knows', idtype=idtype).formats('csr')
    g_z = dgl.bipartite(([0, 1, 3], [2, 3, 4]), 'user', 'knows', 'knowledge', idtype=idtype)
235
236
237
238
239
    g_x.nodes['user'].data['h'] = F.randn((4, 3))
    g_x.edges['follows'].data['w'] = F.randn((3, 2))
    g_y.nodes['user'].data['hh'] = F.ones((4, 5))
    g_y.edges['knows'].data['ww'] = F.randn((2, 10))
    g = dgl.hetero_from_relations([g_x, g_y, g_z])
240
    return [g, g_x, g_y, g_z]
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

def test_deserialize_old_heterograph_file():
    path = os.path.join(
        os.path.dirname(__file__), "data/hetero1.bin")
    g_list, label_dict = load_graphs(path)
    assert g_list[0].idtype == F.int64
    assert g_list[3].idtype == F.int32
    assert np.allclose(
        F.asnumpy(g_list[2].nodes['user'].data['hh']), np.ones((4, 5)))
    assert np.allclose(
        F.asnumpy(g_list[5].nodes['user'].data['hh']), np.ones((4, 5)))
    edges = g_list[0]['follows'].edges()
    assert np.allclose(F.asnumpy(edges[0]), np.array([0, 1, 2]))
    assert np.allclose(F.asnumpy(edges[1]), np.array([1, 2, 3]))
    assert F.allclose(label_dict['graph_label'], F.ones(54))

def create_old_heterograph_files():
    path = os.path.join(
        os.path.dirname(__file__), "data/hetero1.bin")
260
    g_list0 = create_heterographs(F.int64) + create_heterographs(F.int32)
261
262
263
264
    labels_dict = {"graph_label": F.ones(54)}
    save_graphs(path, g_list0, labels_dict)


265
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
266
267
268
269
def test_serialize_heterograph():
    f = tempfile.NamedTemporaryFile(delete=False)
    path = f.name
    f.close()
270
    g_list0 = create_heterographs2(F.int64) + create_heterographs2(F.int32)
271
272
273
274
    save_graphs(path, g_list0)

    g_list, _ = load_graphs(path)
    assert g_list[0].idtype == F.int64
275
276
277
278
    assert len(g_list[0].canonical_etypes) == 3
    for i in range(len(g_list0)):
        for j, etypes in enumerate(g_list0[i].canonical_etypes):
            assert g_list[i].canonical_etypes[j] == etypes
279
280
281
    #assert g_list[1].restrict_format() == 'any'
    #assert g_list[2].restrict_format() == 'csr'

282
    assert g_list[4].idtype == F.int32
283
284
285
    assert np.allclose(
        F.asnumpy(g_list[2].nodes['user'].data['hh']), np.ones((4, 5)))
    assert np.allclose(
286
        F.asnumpy(g_list[6].nodes['user'].data['hh']), np.ones((4, 5)))
287
288
289
290
291
292
293
    edges = g_list[0]['follows'].edges()
    assert np.allclose(F.asnumpy(edges[0]), np.array([0, 1, 2]))
    assert np.allclose(F.asnumpy(edges[1]), np.array([1, 2, 3]))
    for i in range(len(g_list)):
        assert g_list[i].ntypes == g_list0[i].ntypes
        assert g_list[i].etypes == g_list0[i].etypes

294
295
296
297
    # test set feature after load_graph
    g_list[3].nodes['user'].data['test'] = F.tensor([0, 1, 2, 4])
    g_list[3].edata['test'] = F.tensor([0, 1, 2])

298
299
    os.unlink(path)

300
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU not implemented")
301
302
303
@pytest.mark.skip(reason="lack of permission on CI")
def test_serialize_heterograph_s3():
    path = "s3://dglci-data-test/graph2.bin"
304
    g_list0 = create_heterographs(F.int64) + create_heterographs(F.int32)
305
306
307
308
    save_graphs(path, g_list0)

    g_list = load_graphs(path, [0, 2, 5])
    assert g_list[0].idtype == F.int64
309
    #assert g_list[1].restrict_format() == 'csr'
310
311
312
313
314
315
316
317
318
319
    assert np.allclose(
        F.asnumpy(g_list[1].nodes['user'].data['hh']), np.ones((4, 5)))
    assert np.allclose(
        F.asnumpy(g_list[2].nodes['user'].data['hh']), np.ones((4, 5)))
    edges = g_list[0]['follows'].edges()
    assert np.allclose(F.asnumpy(edges[0]), np.array([0, 1, 2]))
    assert np.allclose(F.asnumpy(edges[1]), np.array([1, 2, 3]))



VoVAllen's avatar
VoVAllen committed
320
if __name__ == "__main__":
321
    pass
322
323
324
325
326
327
328
329
330
331
332
333
334
335
    #test_graph_serialize_with_feature(True)
    #test_graph_serialize_with_feature(False)
    #test_graph_serialize_without_feature(True)
    #test_graph_serialize_without_feature(False)
    #test_graph_serialize_with_labels(True)
    #test_graph_serialize_with_labels(False)
    #test_serialize_tensors()
    #test_serialize_empty_dict()
    #test_load_old_files1()
    #test_load_old_files2()
    #test_serialize_heterograph()
    #test_serialize_heterograph_s3()
    #test_deserialize_old_heterograph_file()
    #create_old_heterograph_files()