test_serialize.py 10.2 KB
Newer Older
VoVAllen's avatar
VoVAllen committed
1
2
3
4
5
6
import backend as F
import numpy as np
import scipy as sp
import time
import tempfile
import os
7
import pytest
VoVAllen's avatar
VoVAllen committed
8
9
10

from dgl import DGLGraph
import dgl
11
12
import dgl.ndarray as nd
from dgl.data.utils import save_graphs, load_graphs, load_labels, save_tensors, load_tensors
VoVAllen's avatar
VoVAllen committed
13
14
15
16

np.random.seed(44)


17
def generate_rand_graph(n, is_hetero):
VoVAllen's avatar
VoVAllen committed
18
19
    arr = (sp.sparse.random(n, n, density=0.1,
                            format='coo') != 0).astype(np.int64)
20
21
22
23
    if is_hetero:
        return dgl.graph(arr)
    else:
        return DGLGraph(arr, readonly=True)
VoVAllen's avatar
VoVAllen committed
24
25


26
def construct_graph(n, is_hetero):
VoVAllen's avatar
VoVAllen committed
27
28
    g_list = []
    for i in range(n):
29
        g = generate_rand_graph(30, is_hetero)
VoVAllen's avatar
VoVAllen committed
30
31
32
33
34
35
36
        g.edata['e1'] = F.randn((g.number_of_edges(), 32))
        g.edata['e2'] = F.ones((g.number_of_edges(), 32))
        g.ndata['n1'] = F.randn((g.number_of_nodes(), 64))
        g_list.append(g)
    return g_list


37
38
@pytest.mark.parametrize('is_hetero', [True, False])
def test_graph_serialize_with_feature(is_hetero):
VoVAllen's avatar
VoVAllen committed
39
40
41
42
    num_graphs = 100

    t0 = time.time()

43
    g_list = construct_graph(num_graphs, is_hetero)
VoVAllen's avatar
VoVAllen committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

    t1 = time.time()

    # create a temporary file and immediately release it so DGL can open it.
    f = tempfile.NamedTemporaryFile(delete=False)
    path = f.name
    f.close()

    save_graphs(path, g_list)

    t2 = time.time()
    idx_list = np.random.permutation(np.arange(num_graphs)).tolist()
    loadg_list, _ = load_graphs(path, idx_list)

    t3 = time.time()
    idx = idx_list[0]
    load_g = loadg_list[0]
    print("Save time: {} s".format(t2 - t1))
    print("Load time: {} s".format(t3 - t2))
    print("Graph Construction time: {} s".format(t1 - t0))

    assert F.allclose(load_g.nodes(), g_list[idx].nodes())

    load_edges = load_g.all_edges('uv', 'eid')
    g_edges = g_list[idx].all_edges('uv', 'eid')
    assert F.allclose(load_edges[0], g_edges[0])
    assert F.allclose(load_edges[1], g_edges[1])
    assert F.allclose(load_g.edata['e1'], g_list[idx].edata['e1'])
    assert F.allclose(load_g.edata['e2'], g_list[idx].edata['e2'])
    assert F.allclose(load_g.ndata['n1'], g_list[idx].ndata['n1'])

    os.unlink(path)


78
79
@pytest.mark.parametrize('is_hetero', [True, False])
def test_graph_serialize_without_feature(is_hetero):
VoVAllen's avatar
VoVAllen committed
80
    num_graphs = 100
81
    g_list = [generate_rand_graph(30, is_hetero) for _ in range(num_graphs)]
VoVAllen's avatar
VoVAllen committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

    # create a temporary file and immediately release it so DGL can open it.
    f = tempfile.NamedTemporaryFile(delete=False)
    path = f.name
    f.close()

    save_graphs(path, g_list)

    idx_list = np.random.permutation(np.arange(num_graphs)).tolist()
    loadg_list, _ = load_graphs(path, idx_list)

    idx = idx_list[0]
    load_g = loadg_list[0]

    assert F.allclose(load_g.nodes(), g_list[idx].nodes())

    load_edges = load_g.all_edges('uv', 'eid')
    g_edges = g_list[idx].all_edges('uv', 'eid')
    assert F.allclose(load_edges[0], g_edges[0])
    assert F.allclose(load_edges[1], g_edges[1])

    os.unlink(path)

105
106
@pytest.mark.parametrize('is_hetero', [True, False])
def test_graph_serialize_with_labels(is_hetero):
VoVAllen's avatar
VoVAllen committed
107
    num_graphs = 100
108
    g_list = [generate_rand_graph(30, is_hetero) for _ in range(num_graphs)]
VoVAllen's avatar
VoVAllen committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
    labels = {"label": F.zeros((num_graphs, 1))}

    # create a temporary file and immediately release it so DGL can open it.
    f = tempfile.NamedTemporaryFile(delete=False)
    path = f.name
    f.close()

    save_graphs(path, g_list, labels)

    idx_list = np.random.permutation(np.arange(num_graphs)).tolist()
    loadg_list, l_labels0 = load_graphs(path, idx_list)
    l_labels = load_labels(path)
    assert F.allclose(l_labels['label'], labels['label'])
    assert F.allclose(l_labels0['label'], labels['label'])

    idx = idx_list[0]
    load_g = loadg_list[0]

    assert F.allclose(load_g.nodes(), g_list[idx].nodes())

    load_edges = load_g.all_edges('uv', 'eid')
    g_edges = g_list[idx].all_edges('uv', 'eid')
    assert F.allclose(load_edges[0], g_edges[0])
    assert F.allclose(load_edges[1], g_edges[1])

    os.unlink(path)


137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
def test_serialize_tensors():
    # create a temporary file and immediately release it so DGL can open it.
    f = tempfile.NamedTemporaryFile(delete=False)
    path = f.name
    f.close()

    tensor_dict = {"a": F.tensor(
        [1, 3, -1, 0], dtype=F.int64), "1@1": F.tensor([1.5, 2], dtype=F.float32)}

    save_tensors(path, tensor_dict)

    load_tensor_dict = load_tensors(path)

    for key in tensor_dict:
        assert key in load_tensor_dict
        assert np.array_equal(
            F.asnumpy(load_tensor_dict[key]), F.asnumpy(tensor_dict[key]))

    load_nd_dict = load_tensors(path, return_dgl_ndarray=True)

    for key in tensor_dict:
        assert key in load_nd_dict
        assert isinstance(load_nd_dict[key], nd.NDArray)
        assert np.array_equal(
            load_nd_dict[key].asnumpy(), F.asnumpy(tensor_dict[key]))

    os.unlink(path)

165

166
167
168
169
170
171
172
173
174
175
176
177
def test_serialize_empty_dict():
    # create a temporary file and immediately release it so DGL can open it.
    f = tempfile.NamedTemporaryFile(delete=False)
    path = f.name
    f.close()

    tensor_dict = {}

    save_tensors(path, tensor_dict)

    load_tensor_dict = load_tensors(path)
    assert isinstance(load_tensor_dict, dict)
178
    assert len(load_tensor_dict) == 0
179
180

    os.unlink(path)
181

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293

def test_load_old_files1():
    loadg_list, _ = load_graphs(os.path.join(
        os.path.dirname(__file__), "data/1.bin"))
    idx, num_nodes, edge0, edge1, edata_e1, edata_e2, ndata_n1 = np.load(
        os.path.join(os.path.dirname(__file__), "data/1.npy"), allow_pickle=True)

    load_g = loadg_list[idx]
    load_edges = load_g.all_edges('uv', 'eid')

    assert np.allclose(F.asnumpy(load_edges[0]), edge0)
    assert np.allclose(F.asnumpy(load_edges[1]), edge1)
    assert np.allclose(F.asnumpy(load_g.edata['e1']), edata_e1)
    assert np.allclose(F.asnumpy(load_g.edata['e2']), edata_e2)
    assert np.allclose(F.asnumpy(load_g.ndata['n1']), ndata_n1)


def test_load_old_files2():
    loadg_list, labels0 = load_graphs(os.path.join(
        os.path.dirname(__file__), "data/2.bin"))
    labels1 = load_labels(os.path.join(
        os.path.dirname(__file__), "data/2.bin"))
    idx, edges0, edges1, np_labels = np.load(os.path.join(
        os.path.dirname(__file__), "data/2.npy"), allow_pickle=True)
    assert np.allclose(F.asnumpy(labels0['label']), np_labels)
    assert np.allclose(F.asnumpy(labels1['label']), np_labels)

    load_g = loadg_list[idx]
    load_edges = load_g.all_edges('uv', 'eid')
    assert np.allclose(F.asnumpy(load_edges[0]), edges0)
    assert np.allclose(F.asnumpy(load_edges[1]), edges1)


def create_heterographs(index_dtype):
    g_x = dgl.graph(([0, 1, 2], [1, 2, 3]), 'user',
                    'follows', index_dtype=index_dtype, restrict_format='any')
    g_y = dgl.graph(([0, 2], [2, 3]), 'user', 'knows', index_dtype=index_dtype, restrict_format='csr')
    g_x.nodes['user'].data['h'] = F.randn((4, 3))
    g_x.edges['follows'].data['w'] = F.randn((3, 2))
    g_y.nodes['user'].data['hh'] = F.ones((4, 5))
    g_y.edges['knows'].data['ww'] = F.randn((2, 10))
    g = dgl.hetero_from_relations([g_x, g_y])
    return [g, g_x, g_y]


def test_deserialize_old_heterograph_file():
    path = os.path.join(
        os.path.dirname(__file__), "data/hetero1.bin")
    g_list, label_dict = load_graphs(path)
    assert g_list[0].idtype == F.int64
    assert g_list[3].idtype == F.int32
    assert np.allclose(
        F.asnumpy(g_list[2].nodes['user'].data['hh']), np.ones((4, 5)))
    assert np.allclose(
        F.asnumpy(g_list[5].nodes['user'].data['hh']), np.ones((4, 5)))
    edges = g_list[0]['follows'].edges()
    assert np.allclose(F.asnumpy(edges[0]), np.array([0, 1, 2]))
    assert np.allclose(F.asnumpy(edges[1]), np.array([1, 2, 3]))
    assert F.allclose(label_dict['graph_label'], F.ones(54))

def create_old_heterograph_files():
    path = os.path.join(
        os.path.dirname(__file__), "data/hetero1.bin")
    g_list0 = create_heterographs("int64") + create_heterographs("int32")
    labels_dict = {"graph_label": F.ones(54)}
    save_graphs(path, g_list0, labels_dict)


def test_serialize_heterograph():
    f = tempfile.NamedTemporaryFile(delete=False)
    path = f.name
    f.close()
    g_list0 = create_heterographs("int64") + create_heterographs("int32")
    save_graphs(path, g_list0)

    g_list, _ = load_graphs(path)
    assert g_list[0].idtype == F.int64
    assert g_list[1].restrict_format() == 'any'
    assert g_list[2].restrict_format() == 'csr'
    assert g_list[3].idtype == F.int32
    assert np.allclose(
        F.asnumpy(g_list[2].nodes['user'].data['hh']), np.ones((4, 5)))
    assert np.allclose(
        F.asnumpy(g_list[5].nodes['user'].data['hh']), np.ones((4, 5)))
    edges = g_list[0]['follows'].edges()
    assert np.allclose(F.asnumpy(edges[0]), np.array([0, 1, 2]))
    assert np.allclose(F.asnumpy(edges[1]), np.array([1, 2, 3]))
    for i in range(len(g_list)):
        assert g_list[i].ntypes == g_list0[i].ntypes
        assert g_list[i].etypes == g_list0[i].etypes

    os.unlink(path)

@pytest.mark.skip(reason="lack of permission on CI")
def test_serialize_heterograph_s3():
    path = "s3://dglci-data-test/graph2.bin"
    g_list0 = create_heterographs("int64") + create_heterographs("int32")
    save_graphs(path, g_list0)

    g_list = load_graphs(path, [0, 2, 5])
    assert g_list[0].idtype == F.int64
    assert g_list[1].restrict_format() == 'csr'
    assert np.allclose(
        F.asnumpy(g_list[1].nodes['user'].data['hh']), np.ones((4, 5)))
    assert np.allclose(
        F.asnumpy(g_list[2].nodes['user'].data['hh']), np.ones((4, 5)))
    edges = g_list[0]['follows'].edges()
    assert np.allclose(F.asnumpy(edges[0]), np.array([0, 1, 2]))
    assert np.allclose(F.asnumpy(edges[1]), np.array([1, 2, 3]))



VoVAllen's avatar
VoVAllen committed
294
if __name__ == "__main__":
295
296
297
298
299
300
301
    pass
    test_graph_serialize_with_feature(True)
    test_graph_serialize_with_feature(False)
    test_graph_serialize_without_feature(True)
    test_graph_serialize_without_feature(False)
    test_graph_serialize_with_labels(True)
    test_graph_serialize_with_labels(False)
302
    test_serialize_tensors()
303
304
305
306
307
308
309
    test_serialize_empty_dict()
    test_load_old_files1()
    test_load_old_files2()
    test_serialize_heterograph()
    # test_serialize_heterograph_s3()
    test_deserialize_old_heterograph_file()
    # create_old_heterograph_files()