union_partition.cc 17.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
/*!
 *  Copyright (c) 2020 by Contributors
 * \file graph/transform/union_partition.cc
 * \brief Functions for partition, union multiple graphs.
 */
#include "../heterograph.h"
using namespace dgl::runtime;

namespace dgl {

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
HeteroGraphPtr JointUnionHeteroGraph(
  GraphPtr meta_graph, const std::vector<HeteroGraphPtr>& component_graphs) {
  CHECK_GT(component_graphs.size(), 0) << "Input graph list has at least two graphs";
  std::vector<HeteroGraphPtr> rel_graphs(meta_graph->NumEdges());
  std::vector<int64_t> num_nodes_per_type(meta_graph->NumVertices(), 0);

  // Loop over all canonical etypes
  for (dgl_type_t etype = 0; etype < meta_graph->NumEdges(); ++etype) {
    auto pair = meta_graph->FindEdge(etype);
    const dgl_type_t src_vtype = pair.first;
    const dgl_type_t dst_vtype = pair.second;
    uint64_t num_src_v = component_graphs[0]->NumVertices(src_vtype);
    uint64_t num_dst_v = component_graphs[0]->NumVertices(dst_vtype);
    HeteroGraphPtr rgptr = nullptr;

    // ALL = CSC | CSR | COO
27
28
29
    const dgl_format_code_t code =\
      component_graphs[0]->GetRelationGraph(etype)->GetAllowedFormats();

30
31
32
33
34
35
36
37
    // get common format
    for (size_t i = 0; i < component_graphs.size(); ++i) {
      const auto& cg = component_graphs[i];
      CHECK_EQ(num_src_v, component_graphs[i]->NumVertices(src_vtype)) << "Input graph[" << i <<
        "] should have same number of src vertices as input graph[0]";
      CHECK_EQ(num_dst_v, component_graphs[i]->NumVertices(dst_vtype)) << "Input graph[" << i <<
        "] should have same number of dst vertices as input graph[0]";

38
39
40
      const dgl_format_code_t curr_code = cg->GetRelationGraph(etype)->GetAllowedFormats();
      if (curr_code != code)
        LOG(FATAL) << "All components should have the same formats";
41
42
43
    }

    // prefer COO
44
    if (FORMAT_HAS_COO(code)) {
45
46
47
48
49
50
51
52
53
      std::vector<aten::COOMatrix> coos;
      for (size_t i = 0; i < component_graphs.size(); ++i) {
        const auto& cg = component_graphs[i];
        aten::COOMatrix coo = cg->GetCOOMatrix(etype);
        coos.push_back(coo);
      }

      aten::COOMatrix res = aten::UnionCoo(coos);
      rgptr = UnitGraph::CreateFromCOO(
54
55
          (src_vtype == dst_vtype) ? 1 : 2, res, code);
    } else if (FORMAT_HAS_CSR(code)) {
56
57
58
59
60
61
62
63
64
      std::vector<aten::CSRMatrix> csrs;
      for (size_t i = 0; i < component_graphs.size(); ++i) {
        const auto& cg = component_graphs[i];
        aten::CSRMatrix csr = cg->GetCSRMatrix(etype);
        csrs.push_back(csr);
      }

      aten::CSRMatrix res = aten::UnionCsr(csrs);
      rgptr = UnitGraph::CreateFromCSR(
65
66
        (src_vtype == dst_vtype) ? 1 : 2, res, code);
    } else if (FORMAT_HAS_CSC(code)) {
67
68
69
70
71
72
73
74
75
76
      // CSR and CSC have the same storage format, i.e. CSRMatrix
      std::vector<aten::CSRMatrix> cscs;
      for (size_t i = 0; i < component_graphs.size(); ++i) {
        const auto& cg = component_graphs[i];
        aten::CSRMatrix csc = cg->GetCSCMatrix(etype);
        cscs.push_back(csc);
      }

      aten::CSRMatrix res = aten::UnionCsr(cscs);
      rgptr = UnitGraph::CreateFromCSC(
77
        (src_vtype == dst_vtype) ? 1 : 2, res, code);
78
79
80
81
82
83
84
85
86
87
    }

    rel_graphs[etype] = rgptr;
    num_nodes_per_type[src_vtype] = num_src_v;
    num_nodes_per_type[dst_vtype] = num_dst_v;
  }

  return CreateHeteroGraph(meta_graph, rel_graphs, std::move(num_nodes_per_type));
}

88
89
90
91
92
93
94
95
96
97
98
99
100
101
HeteroGraphPtr DisjointUnionHeteroGraph2(
    GraphPtr meta_graph, const std::vector<HeteroGraphPtr>& component_graphs) {
  CHECK_GT(component_graphs.size(), 0) << "Input graph list is empty";
  std::vector<HeteroGraphPtr> rel_graphs(meta_graph->NumEdges());
  std::vector<int64_t> num_nodes_per_type(meta_graph->NumVertices(), 0);

  // Loop over all canonical etypes
  for (dgl_type_t etype = 0; etype < meta_graph->NumEdges(); ++etype) {
    auto pair = meta_graph->FindEdge(etype);
    const dgl_type_t src_vtype = pair.first;
    const dgl_type_t dst_vtype = pair.second;
    uint64_t src_offset = 0, dst_offset = 0;
    HeteroGraphPtr rgptr = nullptr;

102
103
    const dgl_format_code_t code =\
      component_graphs[0]->GetRelationGraph(etype)->GetAllowedFormats();
104
105
106
    // do some preprocess
    for (size_t i = 0; i < component_graphs.size(); ++i) {
      const auto& cg = component_graphs[i];
107
108
109
      const dgl_format_code_t cur_code = cg->GetRelationGraph(etype)->GetAllowedFormats();
      if (cur_code != code)
        LOG(FATAL) << "All components should have the same formats";
110
111
112
113
114
115
116

      // Update offsets
      src_offset += cg->NumVertices(src_vtype);
      dst_offset += cg->NumVertices(dst_vtype);
    }

    // prefer COO
117
    if (FORMAT_HAS_COO(code)) {
118
119
120
121
122
123
124
125
126
127
      std::vector<aten::COOMatrix> coos;
      for (size_t i = 0; i < component_graphs.size(); ++i) {
        const auto& cg = component_graphs[i];
        aten::COOMatrix coo = cg->GetCOOMatrix(etype);
        coos.push_back(coo);
      }

      aten::COOMatrix res = aten::DisjointUnionCoo(coos);

      rgptr = UnitGraph::CreateFromCOO(
128
129
          (src_vtype == dst_vtype) ? 1 : 2, res, code);
    } else if (FORMAT_HAS_CSR(code)) {
130
131
132
133
134
135
136
137
138
139
      std::vector<aten::CSRMatrix> csrs;
      for (size_t i = 0; i < component_graphs.size(); ++i) {
        const auto& cg = component_graphs[i];
        aten::CSRMatrix csr = cg->GetCSRMatrix(etype);
        csrs.push_back(csr);
      }

      aten::CSRMatrix res = aten::DisjointUnionCsr(csrs);

      rgptr = UnitGraph::CreateFromCSR(
140
141
        (src_vtype == dst_vtype) ? 1 : 2, res, code);
    } else if (FORMAT_HAS_CSC(code)) {
142
      // CSR and CSC have the same storage format, i.e. CSRMatrix
143
144
145
146
147
148
149
150
151
      std::vector<aten::CSRMatrix> cscs;
      for (size_t i = 0; i < component_graphs.size(); ++i) {
        const auto& cg = component_graphs[i];
        aten::CSRMatrix csc = cg->GetCSCMatrix(etype);
        cscs.push_back(csc);
      }

      aten::CSRMatrix res = aten::DisjointUnionCsr(cscs);
      rgptr = UnitGraph::CreateFromCSC(
152
        (src_vtype == dst_vtype) ? 1 : 2, res, code);
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
    }
    rel_graphs[etype] = rgptr;
    num_nodes_per_type[src_vtype] = src_offset;
    num_nodes_per_type[dst_vtype] = dst_offset;
  }

  return CreateHeteroGraph(meta_graph, rel_graphs, std::move(num_nodes_per_type));
}

std::vector<HeteroGraphPtr> DisjointPartitionHeteroBySizes2(
    GraphPtr meta_graph, HeteroGraphPtr batched_graph, IdArray vertex_sizes, IdArray edge_sizes) {
  // Sanity check for vertex sizes
  CHECK_EQ(vertex_sizes->dtype.bits, 64) << "dtype of vertex_sizes should be int64";
  CHECK_EQ(edge_sizes->dtype.bits, 64) << "dtype of edge_sizes should be int64";
  const uint64_t len_vertex_sizes = vertex_sizes->shape[0];
  const uint64_t* vertex_sizes_data = static_cast<uint64_t*>(vertex_sizes->data);
  const uint64_t num_vertex_types = meta_graph->NumVertices();
  const uint64_t batch_size = len_vertex_sizes / num_vertex_types;

  // Map vertex type to the corresponding node cum sum
  std::vector<std::vector<uint64_t>> vertex_cumsum;
  vertex_cumsum.resize(num_vertex_types);
  // Loop over all vertex types
  for (uint64_t vtype = 0; vtype < num_vertex_types; ++vtype) {
    vertex_cumsum[vtype].push_back(0);
    for (uint64_t g = 0; g < batch_size; ++g) {
      // We've flattened the number of vertices in the batch for all types
      vertex_cumsum[vtype].push_back(
        vertex_cumsum[vtype][g] + vertex_sizes_data[vtype * batch_size + g]);
    }
    CHECK_EQ(vertex_cumsum[vtype][batch_size], batched_graph->NumVertices(vtype))
      << "Sum of the given sizes must equal to the number of nodes for type " << vtype;
  }

  // Sanity check for edge sizes
  const uint64_t* edge_sizes_data = static_cast<uint64_t*>(edge_sizes->data);
  const uint64_t num_edge_types = meta_graph->NumEdges();
  // Map edge type to the corresponding edge cum sum
  std::vector<std::vector<uint64_t>> edge_cumsum;
  edge_cumsum.resize(num_edge_types);
  // Loop over all edge types
  for (uint64_t etype = 0; etype < num_edge_types; ++etype) {
    edge_cumsum[etype].push_back(0);
    for (uint64_t g = 0; g < batch_size; ++g) {
      // We've flattened the number of edges in the batch for all types
      edge_cumsum[etype].push_back(
        edge_cumsum[etype][g] + edge_sizes_data[etype * batch_size + g]);
    }
    CHECK_EQ(edge_cumsum[etype][batch_size], batched_graph->NumEdges(etype))
      << "Sum of the given sizes must equal to the number of edges for type " << etype;
  }

  // Construct relation graphs for unbatched graphs
  std::vector<std::vector<HeteroGraphPtr>> rel_graphs;
  rel_graphs.resize(batch_size);
  // Loop over all edge types
209
  auto code = batched_graph->GetRelationGraph(0)->GetAllowedFormats();
210

211
  if (FORMAT_HAS_COO(code)) {
212
213
214
215
216
217
218
219
220
221
222
223
    for (uint64_t etype = 0; etype < num_edge_types; ++etype) {
      auto pair = meta_graph->FindEdge(etype);
      const dgl_type_t src_vtype = pair.first;
      const dgl_type_t dst_vtype = pair.second;
      aten::COOMatrix coo = batched_graph->GetCOOMatrix(etype);
      auto res = aten::DisjointPartitionCooBySizes(coo,
                                                   batch_size,
                                                   edge_cumsum[etype],
                                                   vertex_cumsum[src_vtype],
                                                   vertex_cumsum[dst_vtype]);
      for (uint64_t g = 0; g < batch_size; ++g) {
        HeteroGraphPtr rgptr = UnitGraph::CreateFromCOO(
224
          (src_vtype == dst_vtype) ? 1 : 2, res[g], code);
225
226
227
        rel_graphs[g].push_back(rgptr);
      }
    }
228
  } else if (FORMAT_HAS_CSR(code)) {
229
230
231
232
233
234
235
236
237
238
239
240
    for (uint64_t etype = 0; etype < num_edge_types; ++etype) {
      auto pair = meta_graph->FindEdge(etype);
      const dgl_type_t src_vtype = pair.first;
      const dgl_type_t dst_vtype = pair.second;
      aten::CSRMatrix csr = batched_graph->GetCSRMatrix(etype);
      auto res = aten::DisjointPartitionCsrBySizes(csr,
                                                   batch_size,
                                                   edge_cumsum[etype],
                                                   vertex_cumsum[src_vtype],
                                                   vertex_cumsum[dst_vtype]);
      for (uint64_t g = 0; g < batch_size; ++g) {
        HeteroGraphPtr rgptr = UnitGraph::CreateFromCSR(
241
          (src_vtype == dst_vtype) ? 1 : 2, res[g], code);
242
243
244
        rel_graphs[g].push_back(rgptr);
      }
    }
245
  } else if (FORMAT_HAS_CSC(code)) {
246
247
248
249
    for (uint64_t etype = 0; etype < num_edge_types; ++etype) {
      auto pair = meta_graph->FindEdge(etype);
      const dgl_type_t src_vtype = pair.first;
      const dgl_type_t dst_vtype = pair.second;
250
      // CSR and CSC have the same storage format, i.e. CSRMatrix
251
252
253
254
255
256
257
258
      aten::CSRMatrix csc = batched_graph->GetCSCMatrix(etype);
      auto res = aten::DisjointPartitionCsrBySizes(csc,
                                                   batch_size,
                                                   edge_cumsum[etype],
                                                   vertex_cumsum[dst_vtype],
                                                   vertex_cumsum[src_vtype]);
      for (uint64_t g = 0; g < batch_size; ++g) {
        HeteroGraphPtr rgptr = UnitGraph::CreateFromCSC(
259
          (src_vtype == dst_vtype) ? 1 : 2, res[g], code);
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
        rel_graphs[g].push_back(rgptr);
      }
    }
  }

  std::vector<HeteroGraphPtr> rst;
  std::vector<int64_t> num_nodes_per_type(num_vertex_types);
  for (uint64_t g = 0; g < batch_size; ++g) {
    for (uint64_t i = 0; i < num_vertex_types; ++i)
      num_nodes_per_type[i] = vertex_sizes_data[i * batch_size + g];
    rst.push_back(CreateHeteroGraph(meta_graph, rel_graphs[g], num_nodes_per_type));
  }
  return rst;
}

275
template <class IdType>
276
277
278
279
HeteroGraphPtr DisjointUnionHeteroGraph(
    GraphPtr meta_graph, const std::vector<HeteroGraphPtr>& component_graphs) {
  CHECK_GT(component_graphs.size(), 0) << "Input graph list is empty";
  std::vector<HeteroGraphPtr> rel_graphs(meta_graph->NumEdges());
280
  std::vector<int64_t> num_nodes_per_type(meta_graph->NumVertices(), 0);
281
282
283
284
285
286

  // Loop over all canonical etypes
  for (dgl_type_t etype = 0; etype < meta_graph->NumEdges(); ++etype) {
    auto pair = meta_graph->FindEdge(etype);
    const dgl_type_t src_vtype = pair.first;
    const dgl_type_t dst_vtype = pair.second;
287
288
    IdType src_offset = 0, dst_offset = 0;
    std::vector<IdType> result_src, result_dst;
289
290
291
292
293
294

    // Loop over all graphs
    for (size_t i = 0; i < component_graphs.size(); ++i) {
      const auto& cg = component_graphs[i];
      EdgeArray edges = cg->Edges(etype);
      size_t num_edges = cg->NumEdges(etype);
295
296
      const IdType* edges_src_data = static_cast<const IdType*>(edges.src->data);
      const IdType* edges_dst_data = static_cast<const IdType*>(edges.dst->data);
297
298
299
300
301
302
303
304
305
306
307
308

      // Loop over all edges
      for (size_t j = 0; j < num_edges; ++j) {
        // TODO(mufei): Should use array operations to implement this.
        result_src.push_back(edges_src_data[j] + src_offset);
        result_dst.push_back(edges_dst_data[j] + dst_offset);
      }
      // Update offsets
      src_offset += cg->NumVertices(src_vtype);
      dst_offset += cg->NumVertices(dst_vtype);
    }
    HeteroGraphPtr rgptr = UnitGraph::CreateFromCOO(
309
310
311
        (src_vtype == dst_vtype) ? 1 : 2, src_offset, dst_offset,
        aten::VecToIdArray(result_src, sizeof(IdType) * 8),
        aten::VecToIdArray(result_dst, sizeof(IdType) * 8));
312
    rel_graphs[etype] = rgptr;
313
314
    num_nodes_per_type[src_vtype] = src_offset;
    num_nodes_per_type[dst_vtype] = dst_offset;
315
  }
316
  return CreateHeteroGraph(meta_graph, rel_graphs, std::move(num_nodes_per_type));
317
318
}

319
320
321
322
323
324
325
template HeteroGraphPtr DisjointUnionHeteroGraph<int32_t>(
    GraphPtr meta_graph, const std::vector<HeteroGraphPtr>& component_graphs);

template HeteroGraphPtr DisjointUnionHeteroGraph<int64_t>(
    GraphPtr meta_graph, const std::vector<HeteroGraphPtr>& component_graphs);

template <class IdType>
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
std::vector<HeteroGraphPtr> DisjointPartitionHeteroBySizes(
    GraphPtr meta_graph, HeteroGraphPtr batched_graph, IdArray vertex_sizes, IdArray edge_sizes) {
  // Sanity check for vertex sizes
  const uint64_t len_vertex_sizes = vertex_sizes->shape[0];
  const uint64_t* vertex_sizes_data = static_cast<uint64_t*>(vertex_sizes->data);
  const uint64_t num_vertex_types = meta_graph->NumVertices();
  const uint64_t batch_size = len_vertex_sizes / num_vertex_types;
  // Map vertex type to the corresponding node cum sum
  std::vector<std::vector<uint64_t>> vertex_cumsum;
  vertex_cumsum.resize(num_vertex_types);
  // Loop over all vertex types
  for (uint64_t vtype = 0; vtype < num_vertex_types; ++vtype) {
    vertex_cumsum[vtype].push_back(0);
    for (uint64_t g = 0; g < batch_size; ++g) {
      // We've flattened the number of vertices in the batch for all types
      vertex_cumsum[vtype].push_back(
        vertex_cumsum[vtype][g] + vertex_sizes_data[vtype * batch_size + g]);
    }
    CHECK_EQ(vertex_cumsum[vtype][batch_size], batched_graph->NumVertices(vtype))
      << "Sum of the given sizes must equal to the number of nodes for type " << vtype;
  }

  // Sanity check for edge sizes
  const uint64_t* edge_sizes_data = static_cast<uint64_t*>(edge_sizes->data);
  const uint64_t num_edge_types = meta_graph->NumEdges();
  // Map edge type to the corresponding edge cum sum
  std::vector<std::vector<uint64_t>> edge_cumsum;
  edge_cumsum.resize(num_edge_types);
  // Loop over all edge types
  for (uint64_t etype = 0; etype < num_edge_types; ++etype) {
    edge_cumsum[etype].push_back(0);
    for (uint64_t g = 0; g < batch_size; ++g) {
      // We've flattened the number of edges in the batch for all types
      edge_cumsum[etype].push_back(
        edge_cumsum[etype][g] + edge_sizes_data[etype * batch_size + g]);
    }
    CHECK_EQ(edge_cumsum[etype][batch_size], batched_graph->NumEdges(etype))
      << "Sum of the given sizes must equal to the number of edges for type " << etype;
  }

  // Construct relation graphs for unbatched graphs
  std::vector<std::vector<HeteroGraphPtr>> rel_graphs;
  rel_graphs.resize(batch_size);
  // Loop over all edge types
  for (uint64_t etype = 0; etype < num_edge_types; ++etype) {
    auto pair = meta_graph->FindEdge(etype);
    const dgl_type_t src_vtype = pair.first;
    const dgl_type_t dst_vtype = pair.second;
    EdgeArray edges = batched_graph->Edges(etype);
375
376
    const IdType* edges_src_data = static_cast<const IdType*>(edges.src->data);
    const IdType* edges_dst_data = static_cast<const IdType*>(edges.dst->data);
377
378
    // Loop over all graphs to be unbatched
    for (uint64_t g = 0; g < batch_size; ++g) {
379
      std::vector<IdType> result_src, result_dst;
380
381
382
383
384
385
386
      // Loop over the chunk of edges for the specified graph and edge type
      for (uint64_t e = edge_cumsum[etype][g]; e < edge_cumsum[etype][g + 1]; ++e) {
        // TODO(mufei): Should use array operations to implement this.
        result_src.push_back(edges_src_data[e] - vertex_cumsum[src_vtype][g]);
        result_dst.push_back(edges_dst_data[e] - vertex_cumsum[dst_vtype][g]);
      }
      HeteroGraphPtr rgptr = UnitGraph::CreateFromCOO(
387
388
389
390
391
          (src_vtype == dst_vtype) ? 1 : 2,
          vertex_sizes_data[src_vtype * batch_size + g],
          vertex_sizes_data[dst_vtype * batch_size + g],
          aten::VecToIdArray(result_src, sizeof(IdType) * 8),
          aten::VecToIdArray(result_dst, sizeof(IdType) * 8));
392
393
394
395
396
      rel_graphs[g].push_back(rgptr);
    }
  }

  std::vector<HeteroGraphPtr> rst;
397
  std::vector<int64_t> num_nodes_per_type(num_vertex_types);
398
  for (uint64_t g = 0; g < batch_size; ++g) {
399
400
401
    for (uint64_t i = 0; i < num_vertex_types; ++i)
      num_nodes_per_type[i] = vertex_sizes_data[i * batch_size + g];
    rst.push_back(CreateHeteroGraph(meta_graph, rel_graphs[g], num_nodes_per_type));
402
403
404
405
  }
  return rst;
}

406
407
408
409
410
411
template std::vector<HeteroGraphPtr> DisjointPartitionHeteroBySizes<int32_t>(
    GraphPtr meta_graph, HeteroGraphPtr batched_graph, IdArray vertex_sizes, IdArray edge_sizes);

template std::vector<HeteroGraphPtr> DisjointPartitionHeteroBySizes<int64_t>(
    GraphPtr meta_graph, HeteroGraphPtr batched_graph, IdArray vertex_sizes, IdArray edge_sizes);

412
}  // namespace dgl