partition.py 4.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# -*- coding: utf-8 -*-
#
# setup.py
#
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

Da Zheng's avatar
Da Zheng committed
20
21
22
23
from dataloader import get_dataset
import scipy as sp
import numpy as np
import argparse
24
import os
Da Zheng's avatar
Da Zheng committed
25
26
27
28
import dgl
from dgl import backend as F
from dgl.data.utils import load_graphs, save_graphs

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
def write_txt_graph(path, file_name, part_dict, total_nodes):
    partition_book = [0] * total_nodes
    for part_id in part_dict:
        print('write graph %d...' % part_id)
        # Get (h,r,t) triples
        partition_path = path + str(part_id)
        if not os.path.exists(partition_path):
            os.mkdir(partition_path)
        triple_file = os.path.join(partition_path, file_name)
        f = open(triple_file, 'w')
        graph = part_dict[part_id]
        src, dst = graph.all_edges(form='uv', order='eid')
        rel = graph.edata['tid']
        assert len(src) == len(rel)
        src = F.asnumpy(src)
        dst = F.asnumpy(dst)
        rel = F.asnumpy(rel)
        for i in range(len(src)):
            f.write(str(src[i])+'\t'+str(rel[i])+'\t'+str(dst[i])+'\n')
        f.close()
        # Get local2global
        l2g_file = os.path.join(partition_path, 'local_to_global.txt')
        f = open(l2g_file, 'w')
        pid = F.asnumpy(graph.parent_nid)
        for i in range(len(pid)):
            f.write(str(pid[i])+'\n')
        f.close()
        # Update partition_book
        partition = F.asnumpy(graph.ndata['part_id'])
        for i in range(len(pid)):
            partition_book[pid[i]] = partition[i]
    # Write partition_book.txt
    for part_id in part_dict:
        partition_path = path + str(part_id)
        pb_file = os.path.join(partition_path, 'partition_book.txt')
        f = open(pb_file, 'w')
        for i in range(len(partition_book)):
            f.write(str(partition_book[i])+'\n')
        f.close()

Da Zheng's avatar
Da Zheng committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
def main():
    parser = argparse.ArgumentParser(description='Partition a knowledge graph')
    parser.add_argument('--data_path', type=str, default='data',
                        help='root path of all dataset')
    parser.add_argument('--dataset', type=str, default='FB15k',
                        help='dataset name, under data_path')
    parser.add_argument('--data_files', type=str, default=None, nargs='+',
                        help='a list of data files, e.g. entity relation train valid test')
    parser.add_argument('--format', type=str, default='built_in',
                        help='the format of the dataset, it can be built_in,'\
                                'raw_udd_{htr} and udd_{htr}')
    parser.add_argument('-k', '--num-parts', required=True, type=int,
                        help='The number of partitions')
    args = parser.parse_args()
    num_parts = args.num_parts

85
86
    print('load dataset..')

Da Zheng's avatar
Da Zheng committed
87
88
89
    # load dataset and samplers
    dataset = get_dataset(args.data_path, args.dataset, args.format, args.data_files)

90
91
    print('construct graph...')

Da Zheng's avatar
Da Zheng committed
92
93
94
    src, etype_id, dst = dataset.train
    coo = sp.sparse.coo_matrix((np.ones(len(src)), (src, dst)),
            shape=[dataset.n_entities, dataset.n_entities])
95
    g = dgl.DGLGraph(coo, readonly=True, multigraph=True, sort_csr=True)
Da Zheng's avatar
Da Zheng committed
96
97
    g.edata['tid'] = F.tensor(etype_id, F.int64)

98
99
    print('partition graph...')

100
    part_dict = dgl.transforms.metis_partition(g, num_parts, 1)
Da Zheng's avatar
Da Zheng committed
101
102
103
104
105
106
107
108
109
110
111
112
113

    tot_num_inner_edges = 0
    for part_id in part_dict:
        part = part_dict[part_id]

        num_inner_nodes = len(np.nonzero(F.asnumpy(part.ndata['inner_node']))[0])
        num_inner_edges = len(np.nonzero(F.asnumpy(part.edata['inner_edge']))[0])
        print('part {} has {} nodes and {} edges. {} nodes and {} edges are inside the partition'.format(
              part_id, part.number_of_nodes(), part.number_of_edges(),
              num_inner_nodes, num_inner_edges))
        tot_num_inner_edges += num_inner_edges

        part.copy_from_parent()
114
115
116
117
118
119
120

    print('write graph to txt file...')

    txt_file_graph = os.path.join(args.data_path, args.dataset)
    txt_file_graph = os.path.join(txt_file_graph, 'partition_')
    write_txt_graph(txt_file_graph, 'train.txt', part_dict, g.number_of_nodes())

Da Zheng's avatar
Da Zheng committed
121
122
123
124
    print('there are {} edges in the graph and {} edge cuts for {} partitions.'.format(
        g.number_of_edges(), g.number_of_edges() - tot_num_inner_edges, len(part_dict)))

if __name__ == '__main__':
125
    main()