partition.py 4.15 KB
Newer Older
Da Zheng's avatar
Da Zheng committed
1
2
3
4
from dataloader import get_dataset
import scipy as sp
import numpy as np
import argparse
5
import os
Da Zheng's avatar
Da Zheng committed
6
7
8
9
import dgl
from dgl import backend as F
from dgl.data.utils import load_graphs, save_graphs

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
def write_txt_graph(path, file_name, part_dict, total_nodes):
    partition_book = [0] * total_nodes
    for part_id in part_dict:
        print('write graph %d...' % part_id)
        # Get (h,r,t) triples
        partition_path = path + str(part_id)
        if not os.path.exists(partition_path):
            os.mkdir(partition_path)
        triple_file = os.path.join(partition_path, file_name)
        f = open(triple_file, 'w')
        graph = part_dict[part_id]
        src, dst = graph.all_edges(form='uv', order='eid')
        rel = graph.edata['tid']
        assert len(src) == len(rel)
        src = F.asnumpy(src)
        dst = F.asnumpy(dst)
        rel = F.asnumpy(rel)
        for i in range(len(src)):
            f.write(str(src[i])+'\t'+str(rel[i])+'\t'+str(dst[i])+'\n')
        f.close()
        # Get local2global
        l2g_file = os.path.join(partition_path, 'local_to_global.txt')
        f = open(l2g_file, 'w')
        pid = F.asnumpy(graph.parent_nid)
        for i in range(len(pid)):
            f.write(str(pid[i])+'\n')
        f.close()
        # Update partition_book
        partition = F.asnumpy(graph.ndata['part_id'])
        for i in range(len(pid)):
            partition_book[pid[i]] = partition[i]
    # Write partition_book.txt
    for part_id in part_dict:
        partition_path = path + str(part_id)
        pb_file = os.path.join(partition_path, 'partition_book.txt')
        f = open(pb_file, 'w')
        for i in range(len(partition_book)):
            f.write(str(partition_book[i])+'\n')
        f.close()

Da Zheng's avatar
Da Zheng committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
def main():
    parser = argparse.ArgumentParser(description='Partition a knowledge graph')
    parser.add_argument('--data_path', type=str, default='data',
                        help='root path of all dataset')
    parser.add_argument('--dataset', type=str, default='FB15k',
                        help='dataset name, under data_path')
    parser.add_argument('--data_files', type=str, default=None, nargs='+',
                        help='a list of data files, e.g. entity relation train valid test')
    parser.add_argument('--format', type=str, default='built_in',
                        help='the format of the dataset, it can be built_in,'\
                                'raw_udd_{htr} and udd_{htr}')
    parser.add_argument('-k', '--num-parts', required=True, type=int,
                        help='The number of partitions')
    args = parser.parse_args()
    num_parts = args.num_parts

66
67
    print('load dataset..')

Da Zheng's avatar
Da Zheng committed
68
69
70
    # load dataset and samplers
    dataset = get_dataset(args.data_path, args.dataset, args.format, args.data_files)

71
72
    print('construct graph...')

Da Zheng's avatar
Da Zheng committed
73
74
75
    src, etype_id, dst = dataset.train
    coo = sp.sparse.coo_matrix((np.ones(len(src)), (src, dst)),
            shape=[dataset.n_entities, dataset.n_entities])
76
    g = dgl.DGLGraph(coo, readonly=True, multigraph=True, sort_csr=True)
Da Zheng's avatar
Da Zheng committed
77
78
    g.edata['tid'] = F.tensor(etype_id, F.int64)

79
80
    print('partition graph...')

Da Zheng's avatar
Da Zheng committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
    part_dict = dgl.transform.metis_partition(g, num_parts, 1)

    tot_num_inner_edges = 0
    for part_id in part_dict:
        part = part_dict[part_id]

        num_inner_nodes = len(np.nonzero(F.asnumpy(part.ndata['inner_node']))[0])
        num_inner_edges = len(np.nonzero(F.asnumpy(part.edata['inner_edge']))[0])
        print('part {} has {} nodes and {} edges. {} nodes and {} edges are inside the partition'.format(
              part_id, part.number_of_nodes(), part.number_of_edges(),
              num_inner_nodes, num_inner_edges))
        tot_num_inner_edges += num_inner_edges

        part.copy_from_parent()
95
96
97
98
99
100
101

    print('write graph to txt file...')

    txt_file_graph = os.path.join(args.data_path, args.dataset)
    txt_file_graph = os.path.join(txt_file_graph, 'partition_')
    write_txt_graph(txt_file_graph, 'train.txt', part_dict, g.number_of_nodes())

Da Zheng's avatar
Da Zheng committed
102
103
104
105
    print('there are {} edges in the graph and {} edge cuts for {} partitions.'.format(
        g.number_of_edges(), g.number_of_edges() - tot_num_inner_edges, len(part_dict)))

if __name__ == '__main__':
106
    main()