train_dist.py 14.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
import os
os.environ['DGLBACKEND']='pytorch'
from multiprocessing import Process
import argparse, time, math
import numpy as np
from functools import wraps
import tqdm

import dgl
from dgl import DGLGraph
from dgl.data import register_data_args, load_data
from dgl.data.utils import load_graphs
import dgl.function as fn
import dgl.nn.pytorch as dglnn
15
from dgl.distributed import DistDataLoader
16
17
18
19
20
21
22
23
24

import torch as th
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.multiprocessing as mp
from torch.utils.data import DataLoader
from pyinstrument import Profiler

25
26
27
28
29
30
31
32
def load_subtensor(g, seeds, input_nodes, device):
    """
    Copys features and labels of a set of nodes onto GPU.
    """
    batch_inputs = g.ndata['features'][input_nodes].to(device)
    batch_labels = g.ndata['labels'][seeds].to(device)
    return batch_inputs, batch_labels

33
class NeighborSampler(object):
34
    def __init__(self, g, fanouts, sample_neighbors, device):
35
36
37
        self.g = g
        self.fanouts = fanouts
        self.sample_neighbors = sample_neighbors
38
        self.device = device
39
40
41
42
43
44
45
46
47
48
49
50
51

    def sample_blocks(self, seeds):
        seeds = th.LongTensor(np.asarray(seeds))
        blocks = []
        for fanout in self.fanouts:
            # For each seed node, sample ``fanout`` neighbors.
            frontier = self.sample_neighbors(self.g, seeds, fanout, replace=True)
            # Then we compact the frontier into a bipartite graph for message passing.
            block = dgl.to_block(frontier, seeds)
            # Obtain the seed nodes for next layer.
            seeds = block.srcdata[dgl.NID]

            blocks.insert(0, block)
52
53
54

        input_nodes = blocks[0].srcdata[dgl.NID]
        seeds = blocks[-1].dstdata[dgl.NID]
55
        batch_inputs, batch_labels = load_subtensor(self.g, seeds, input_nodes, "cpu")
56
57
        blocks[0].srcdata['features'] = batch_inputs
        blocks[-1].dstdata['labels'] = batch_labels
58
        return blocks
59

60
class DistSAGE(nn.Module):
61
62
    def __init__(self, in_feats, n_hidden, n_classes, n_layers,
                 activation, dropout):
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
        super().__init__()
        self.n_layers = n_layers
        self.n_hidden = n_hidden
        self.n_classes = n_classes
        self.layers = nn.ModuleList()
        self.layers.append(dglnn.SAGEConv(in_feats, n_hidden, 'mean'))
        for i in range(1, n_layers - 1):
            self.layers.append(dglnn.SAGEConv(n_hidden, n_hidden, 'mean'))
        self.layers.append(dglnn.SAGEConv(n_hidden, n_classes, 'mean'))
        self.dropout = nn.Dropout(dropout)
        self.activation = activation

    def forward(self, blocks, x):
        h = x
        for l, (layer, block) in enumerate(zip(self.layers, blocks)):
            h = layer(block, h)
            if l != len(self.layers) - 1:
                h = self.activation(h)
                h = self.dropout(h)
        return h
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

    def inference(self, g, x, batch_size, device):
        """
        Inference with the GraphSAGE model on full neighbors (i.e. without neighbor sampling).
        g : the entire graph.
        x : the input of entire node set.

        The inference code is written in a fashion that it could handle any number of nodes and
        layers.
        """
        # During inference with sampling, multi-layer blocks are very inefficient because
        # lots of computations in the first few layers are repeated.
        # Therefore, we compute the representation of all nodes layer by layer.  The nodes
        # on each layer are of course splitted in batches.
        # TODO: can we standardize this?
        nodes = dgl.distributed.node_split(np.arange(g.number_of_nodes()),
                                           g.get_partition_book(), force_even=True)
100
        y = dgl.distributed.DistTensor((g.number_of_nodes(), self.n_hidden), th.float32, 'h',
101
102
103
                                       persistent=True)
        for l, layer in enumerate(self.layers):
            if l == len(self.layers) - 1:
104
                y = dgl.distributed.DistTensor((g.number_of_nodes(), self.n_classes),
105
106
                                               th.float32, 'h_last', persistent=True)

107
            sampler = NeighborSampler(g, [-1], dgl.distributed.sample_neighbors, device)
108
109
            print('|V|={}, eval batch size: {}'.format(g.number_of_nodes(), batch_size))
            # Create PyTorch DataLoader for constructing blocks
110
            dataloader = DistDataLoader(
111
112
113
114
                dataset=nodes,
                batch_size=batch_size,
                collate_fn=sampler.sample_blocks,
                shuffle=False,
115
                drop_last=False)
116
117

            for blocks in tqdm.tqdm(dataloader):
118
                block = blocks[0].to(device)
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
                input_nodes = block.srcdata[dgl.NID]
                output_nodes = block.dstdata[dgl.NID]
                h = x[input_nodes].to(device)
                h_dst = h[:block.number_of_dst_nodes()]
                h = layer(block, (h, h_dst))
                if l != len(self.layers) - 1:
                    h = self.activation(h)
                    h = self.dropout(h)

                y[output_nodes] = h.cpu()

            x = y
            g.barrier()
        return y

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
def compute_acc(pred, labels):
    """
    Compute the accuracy of prediction given the labels.
    """
    labels = labels.long()
    return (th.argmax(pred, dim=1) == labels).float().sum() / len(pred)

def evaluate(model, g, inputs, labels, val_nid, test_nid, batch_size, device):
    """
    Evaluate the model on the validation set specified by ``val_nid``.
    g : The entire graph.
    inputs : The features of all the nodes.
    labels : The labels of all the nodes.
    val_nid : the node Ids for validation.
    batch_size : Number of nodes to compute at the same time.
    device : The GPU device to evaluate on.
    """
    model.eval()
    with th.no_grad():
        pred = model.inference(g, inputs, batch_size, device)
    model.train()
    return compute_acc(pred[val_nid], labels[val_nid]), compute_acc(pred[test_nid], labels[test_nid])

157
158
def run(args, device, data):
    # Unpack data
159
    train_nid, val_nid, test_nid, in_feats, n_classes, g = data
160
161
    # Create sampler
    sampler = NeighborSampler(g, [int(fanout) for fanout in args.fan_out.split(',')],
162
                              dgl.distributed.sample_neighbors, device)
163

164
165
    # Create DataLoader for constructing blocks
    dataloader = DistDataLoader(
166
167
168
169
        dataset=train_nid.numpy(),
        batch_size=args.batch_size,
        collate_fn=sampler.sample_blocks,
        shuffle=True,
170
        drop_last=False)
171
172

    # Define model and optimizer
173
    model = DistSAGE(in_feats, args.num_hidden, n_classes, args.num_layers, F.relu, args.dropout)
174
    model = model.to(device)
175
    if not args.standalone:
176
177
178
179
180
        if args.num_gpus == -1:
            model = th.nn.parallel.DistributedDataParallel(model)
        else:
            dev_id = g.rank() % args.num_gpus
            model = th.nn.parallel.DistributedDataParallel(model, device_ids=[dev_id], output_device=dev_id)
181
182
183
184
185
186
187
188
189
190
191
    loss_fcn = nn.CrossEntropyLoss()
    loss_fcn = loss_fcn.to(device)
    optimizer = optim.Adam(model.parameters(), lr=args.lr)

    train_size = th.sum(g.ndata['train_mask'][0:g.number_of_nodes()])

    # Training loop
    iter_tput = []
    profiler = Profiler()
    profiler.start()
    epoch = 0
192
    for epoch in range(args.num_epochs):
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
        tic = time.time()

        sample_time = 0
        copy_time = 0
        forward_time = 0
        backward_time = 0
        update_time = 0
        num_seeds = 0
        num_inputs = 0
        start = time.time()
        # Loop over the dataloader to sample the computation dependency graph as a list of
        # blocks.
        step_time = []
        for step, blocks in enumerate(dataloader):
            tic_step = time.time()
            sample_time += tic_step - start

            # The nodes for input lies at the LHS side of the first block.
            # The nodes for output lies at the RHS side of the last block.
212
213
            batch_inputs = blocks[0].srcdata['features']
            batch_labels = blocks[-1].dstdata['labels']
214
            batch_labels = batch_labels.long()
215
216
217

            num_seeds += len(blocks[-1].dstdata[dgl.NID])
            num_inputs += len(blocks[0].srcdata[dgl.NID])
218
219
            blocks = [block.to(device) for block in blocks]
            batch_labels = batch_labels.to(device)
220
221
222
223
224
225
226
227
228
229
230
231
            # Compute loss and prediction
            start = time.time()
            batch_pred = model(blocks, batch_inputs)
            loss = loss_fcn(batch_pred, batch_labels)
            forward_end = time.time()
            optimizer.zero_grad()
            loss.backward()
            compute_end = time.time()
            forward_time += forward_end - start
            backward_time += compute_end - forward_end

            # Aggregate gradients in multiple nodes.
232
233
234
235
236
            if not args.standalone:
                for param in model.parameters():
                    if param.requires_grad and param.grad is not None:
                        th.distributed.all_reduce(param.grad.data,
                                                  op=th.distributed.ReduceOp.SUM)
237
                        param.grad.data /= dgl.distributed.get_num_client()
238
239
240
241
242
243
244
245
246
247

            optimizer.step()
            update_time += time.time() - compute_end

            step_t = time.time() - tic_step
            step_time.append(step_t)
            iter_tput.append(num_seeds / (step_t))
            if step % args.log_every == 0:
                acc = compute_acc(batch_pred, batch_labels)
                gpu_mem_alloc = th.cuda.max_memory_allocated() / 1000000 if th.cuda.is_available() else 0
248
249
                print('Part {} | Epoch {:05d} | Step {:05d} | Loss {:.4f} | Train Acc {:.4f} | Speed (samples/sec) {:.4f} | GPU {:.1f} MiB | time {:.3f} s'.format(
                    g.rank(), epoch, step, loss.item(), acc.item(), np.mean(iter_tput[3:]), gpu_mem_alloc, np.sum(step_time[-args.log_every:])))
250
251
252
            start = time.time()

        toc = time.time()
253
254
        print('Part {}, Epoch Time(s): {:.4f}, sample: {:.4f}, data copy: {:.4f}, forward: {:.4f}, backward: {:.4f}, update: {:.4f}, #seeds: {}, #inputs: {}'.format(
            g.rank(), toc - tic, sample_time, copy_time, forward_time, backward_time, update_time, num_seeds, num_inputs))
255
256
257
        epoch += 1


258
259
        if epoch % args.eval_every == 0 and epoch != 0:
            start = time.time()
260
261
262
263
            val_acc, test_acc = evaluate(model.module, g, g.ndata['features'],
                                         g.ndata['labels'], val_nid, test_nid, args.batch_size_eval, device)
            print('Part {}, Val Acc {:.4f}, Test Acc {:.4f}, time: {:.4f}'.format(g.rank(), val_acc, test_acc,
                                                                                  time.time() - start))
264
265
266
267
268

    profiler.stop()
    print(profiler.output_text(unicode=True, color=True))

def main(args):
269
    dgl.distributed.initialize(args.ip_config, args.num_servers, num_workers=args.num_workers)
270
271
    if not args.standalone:
        th.distributed.init_process_group(backend='gloo')
272
    g = dgl.distributed.DistGraph(args.graph_name, part_config=args.part_config)
273
    print('rank:', g.rank())
274

275
276
277
278
279
280
281
282
283
    pb = g.get_partition_book()
    train_nid = dgl.distributed.node_split(g.ndata['train_mask'], pb, force_even=True)
    val_nid = dgl.distributed.node_split(g.ndata['val_mask'], pb, force_even=True)
    test_nid = dgl.distributed.node_split(g.ndata['test_mask'], pb, force_even=True)
    local_nid = pb.partid2nids(pb.partid).detach().numpy()
    print('part {}, train: {} (local: {}), val: {} (local: {}), test: {} (local: {})'.format(
        g.rank(), len(train_nid), len(np.intersect1d(train_nid.numpy(), local_nid)),
        len(val_nid), len(np.intersect1d(val_nid.numpy(), local_nid)),
        len(test_nid), len(np.intersect1d(test_nid.numpy(), local_nid))))
284
285
286
287
    if args.num_gpus == -1:
        device = th.device('cpu')
    else:
        device = th.device('cuda:'+str(g.rank() % args.num_gpus))
288
289
290
    labels = g.ndata['labels'][np.arange(g.number_of_nodes())]
    n_classes = len(th.unique(labels[th.logical_not(th.isnan(labels))]))
    print('#labels:', n_classes)
291
292
293

    # Pack data
    in_feats = g.ndata['features'].shape[1]
294
    data = train_nid, val_nid, test_nid, in_feats, n_classes, g
295
296
297
298
299
300
    run(args, device, data)
    print("parent ends")

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='GCN')
    register_data_args(parser)
301
    parser.add_argument('--graph_name', type=str, help='graph name')
302
303
    parser.add_argument('--id', type=int, help='the partition id')
    parser.add_argument('--ip_config', type=str, help='The file for IP configuration')
304
    parser.add_argument('--part_config', type=str, help='The path to the partition config file')
305
306
307
    parser.add_argument('--num_clients', type=int, help='The number of clients')
    parser.add_argument('--num_servers', type=int, default=1, help='The number of servers')
    parser.add_argument('--n_classes', type=int, help='the number of classes')
308
309
    parser.add_argument('--num_gpus', type=int, default=-1, 
                        help="the number of GPU device. Use -1 for CPU training")
310
311
312
313
314
315
316
317
    parser.add_argument('--num_epochs', type=int, default=20)
    parser.add_argument('--num_hidden', type=int, default=16)
    parser.add_argument('--num_layers', type=int, default=2)
    parser.add_argument('--fan_out', type=str, default='10,25')
    parser.add_argument('--batch_size', type=int, default=1000)
    parser.add_argument('--batch_size_eval', type=int, default=100000)
    parser.add_argument('--log_every', type=int, default=20)
    parser.add_argument('--eval_every', type=int, default=5)
318
319
    parser.add_argument('--lr', type=float, default=0.003)
    parser.add_argument('--dropout', type=float, default=0.5)
320
    parser.add_argument('--num_workers', type=int, default=4,
321
322
        help="Number of sampling processes. Use 0 for no extra process.")
    parser.add_argument('--local_rank', type=int, help='get rank of the process')
323
    parser.add_argument('--standalone', action='store_true', help='run in the standalone mode')
324
    args = parser.parse_args()
325
326
    assert args.num_workers == int(os.environ.get('DGL_NUM_SAMPLER')), \
    'The num_workers should be the same value with num_samplers.'
327
328

    print(args)
329
    main(args)