binary_reduce_impl.cuh 9.97 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
/*!
 *  Copyright (c) 2019 by Contributors
 * \file kernel/cuda/binary_reduce_impl.cuh
 * \brief Minigun CUDA UDFs for binary reduce
 */
#ifndef DGL_KERNEL_CUDA_BINARY_REDUCE_IMPL_CUH_
#define DGL_KERNEL_CUDA_BINARY_REDUCE_IMPL_CUH_

#include <minigun/minigun.h>

#include "../binary_reduce_impl_decl.h"
#include "../utils.h"
#include "./functor.cuh"
14
#include "../csr_interface.h"
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

namespace dgl {
namespace kernel {
namespace cuda {

// Minigun UDF to compute binary reduce.
template <typename Idx, typename DType, typename Functors>
struct BinaryReduce {
  static __device__ __forceinline__ bool CondEdge(
      Idx src, Idx dst, Idx eid, GData<Idx, DType>* gdata) {
    return true;
  }
  static __device__ __forceinline__ void ApplyEdge(
      Idx src, Idx dst, Idx eid, GData<Idx, DType>* gdata) {
    const int64_t D = gdata->x_length;
    int64_t tx = blockIdx.x * blockDim.x + threadIdx.x;
    int stride_x = blockDim.x * gridDim.x;
    Idx lid = Functors::SelectLeft(src, eid, dst);
    Idx rid = Functors::SelectRight(src, eid, dst);
    Idx oid = Functors::SelectOut(src, eid, dst);
    if (gdata->lhs_mapping) {
      lid = Functors::GetId(lid, gdata->lhs_mapping);
    }
    if (gdata->rhs_mapping) {
      rid = Functors::GetId(rid, gdata->rhs_mapping);
    }
    if (gdata->out_mapping) {
      oid = Functors::GetId(oid, gdata->out_mapping);
    }
    DType* lhsoff = gdata->lhs_data + lid * D;
    DType* rhsoff = gdata->rhs_data + rid * D;
    DType* outoff = gdata->out_data + oid * D;
    while (tx < D) {
      DType lhs = Functors::Read(lhsoff + tx);
      DType rhs = Functors::Read(rhsoff + tx);
      DType out = Functors::Op(lhs, rhs);
      Functors::Write(outoff + tx, out);
      tx += stride_x;
    }
  }
};

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
/*
 * This func do the followings:
 *   1. Convert flattened index to multi-dimension index
 *      according to output shape (assume row-major).
 *   2. Convert multi-dimension index to flattened index for lhs.
 *   3. Convert multi-dimension index to flattened index for rhs.
 */
__device__ __forceinline__ void UnravelRavel(
    const int64_t idx, const int ndim, const int64_t* out_shape, const int64_t* out_stride,
    const int64_t* lhs_shape, const int64_t* lhs_stride,
    const int64_t* rhs_shape, const int64_t* rhs_stride, int64_t *lhs_out, int64_t *rhs_out) {
  if (out_stride[0] == lhs_stride[0]) {
#pragma unroll
    for (int d = 0; d < ndim; ++d) {
      int64_t o_sh = out_shape[d];
      int64_t o_st = out_stride[d];
      int64_t rhs_sh = rhs_shape[d];
      int64_t rhs_st = rhs_stride[d];
      
      int64_t i = (idx / o_st) % o_sh;
      /*
       * Simplfied for rhs_out += min(i, rhs_sh - 1) * rhs_st;
       * rhs_sh be o_sh or 1
       */
      if (rhs_sh > i) { 
        *rhs_out += i * rhs_st;
      }
    }
    *lhs_out = idx;
  } else {
#pragma unroll
    for (int d = 0; d < ndim; ++d) {
      int64_t o_sh = out_shape[d];
      int64_t o_st = out_stride[d];
      int64_t lhs_sh = lhs_shape[d];
      int64_t lhs_st = lhs_stride[d];
  
      int64_t i = (idx / o_st) % o_sh;
      /*
       * Simplfied for lhs_out += min(i, lhs_sh - 1) * lhs_st;
       * lhs_sh be o_sh or 1
       */
      if (lhs_sh > i) {
        *lhs_out += i * lhs_st;
      }
    }
    *rhs_out = idx;
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
  }
}

// Minigun UDF to compute binary reduce with broadcasting.
template <int NDim, typename Idx, typename DType, typename Functors>
struct BinaryReduceBcast {
  static __device__ __forceinline__ bool CondEdge(
      Idx src, Idx dst, Idx eid, BcastGData<NDim, Idx, DType>* gdata) {
    return true;
  }
  static __device__ __forceinline__ void ApplyEdge(
      Idx src, Idx dst, Idx eid, BcastGData<NDim, Idx, DType>* gdata) {
    int64_t tx = blockIdx.x * blockDim.x + threadIdx.x;
    int stride_x = blockDim.x * gridDim.x;
    Idx lid = Functors::SelectLeft(src, eid, dst);
    Idx rid = Functors::SelectRight(src, eid, dst);
    Idx oid = Functors::SelectOut(src, eid, dst);
    if (gdata->lhs_mapping) {
      lid = Functors::GetId(lid, gdata->lhs_mapping);
    }
    if (gdata->rhs_mapping) {
      rid = Functors::GetId(rid, gdata->rhs_mapping);
    }
    if (gdata->out_mapping) {
      oid = Functors::GetId(oid, gdata->out_mapping);
    }
    DType* lhsoff = gdata->lhs_data + lid * gdata->lhs_len;
    DType* rhsoff = gdata->rhs_data + rid * gdata->rhs_len;
    DType* outoff = gdata->out_data + oid * gdata->out_len;
    while (tx < gdata->out_len) {
134
135
136
137
138
139
140
      int64_t lhs_add = 0;
      int64_t rhs_add = 0;
      UnravelRavel(tx, gdata->ndim, gdata->out_shape, gdata->out_stride,
          gdata->lhs_shape, gdata->lhs_stride,
          gdata->rhs_shape, gdata->rhs_stride, &lhs_add, &rhs_add);
      DType lhs = Functors::Read(lhsoff + lhs_add);
      DType rhs = Functors::Read(rhsoff + rhs_add);
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
      DType out = Functors::Op(lhs, rhs);
      Functors::Write(outoff + tx, out);
      tx += stride_x;
    }
  }
};

// Auxiliary template used in UDF.
template <typename Idx, typename DType,
          typename LeftSelector, typename RightSelector,
          typename BinaryOp, typename Reducer>
struct FunctorsTempl {
  static __device__ __forceinline__ Idx SelectOut(
      Idx src, Idx edge, Idx dst) {
    return OutSelector<Reducer>::Type::Call(src, edge, dst);
  }
  static __device__ __forceinline__ Idx SelectLeft(
      Idx src, Idx edge, Idx dst) {
    return LeftSelector::Call(src, edge, dst);
  }
  static __device__ __forceinline__ Idx SelectRight(
      Idx src, Idx edge, Idx dst) {
    return RightSelector::Call(src, edge, dst);
  }
  static __device__ __forceinline__ DType Op(DType lhs, DType rhs) {
    return BinaryOp::Call(lhs, rhs);
  }
  static __device__ __forceinline__ DType Read(DType* addr) {
    return LDGReader<DType>::Call(addr);
  }
  static __device__ __forceinline__ void Write(DType* addr, DType val) {
    Reducer::Call(addr, val);
  }
  static __device__ __forceinline__ Idx GetId(Idx id, Idx* id_map) {
    return LDGReader<Idx>::Call(id_map + id);
  }
};

typedef minigun::advance::Config<true, minigun::advance::kV2N> AdvanceConfig;
}  // namespace cuda

// Template implementation of BinaryReduce operator.
template <int XPU, typename Idx, typename DType,
          typename LeftSelector, typename RightSelector,
          typename BinaryOp, typename Reducer>
void CallBinaryReduce(const minigun::advance::RuntimeConfig& rtcfg,
187
                      const CSRWrapper& graph,
188
189
190
191
192
193
                      GData<Idx, DType>* gdata) {
  typedef cuda::FunctorsTempl<Idx, DType, LeftSelector,
                        RightSelector, BinaryOp, Reducer>
          Functors;
  typedef cuda::BinaryReduce<Idx, DType, Functors> UDF;
  // csr
194
195
  auto outcsr = graph.GetOutCSRMatrix();
  minigun::Csr<Idx> csr = utils::CreateCsr<Idx>(outcsr.indptr, outcsr.indices);
196
197
198
199
  // If the user-given mapping is none and the target is edge data, we need to
  // replace the mapping by the edge ids in the csr graph so that the edge
  // data is correctly read/written.
  if (LeftSelector::target == binary_op::kEdge && gdata->lhs_mapping == nullptr) {
200
    gdata->lhs_mapping = static_cast<Idx*>(outcsr.data->data);
201
202
  }
  if (RightSelector::target == binary_op::kEdge && gdata->rhs_mapping == nullptr) {
203
    gdata->rhs_mapping = static_cast<Idx*>(outcsr.data->data);
204
205
206
  }
  if (OutSelector<Reducer>::Type::target == binary_op::kEdge
      && gdata->out_mapping == nullptr) {
207
    gdata->out_mapping = static_cast<Idx*>(outcsr.data->data);
208
209
210
211
212
213
214
215
216
217
218
219
  }
  // TODO(minjie): allocator
  minigun::advance::Advance<XPU, Idx, cuda::AdvanceConfig, GData<Idx, DType>, UDF>(
        rtcfg, csr, gdata, minigun::IntArray1D<Idx>());
}

// Template implementation of BinaryReduce broadcasting operator.
template <int XPU, int NDim, typename Idx, typename DType,
          typename LeftSelector, typename RightSelector,
          typename BinaryOp, typename Reducer>
void CallBinaryReduceBcast(
  const minigun::advance::RuntimeConfig& rtcfg,
220
  const CSRWrapper& graph,
221
222
223
224
225
226
  BcastGData<NDim, Idx, DType>* gdata) {
  typedef cuda::FunctorsTempl<Idx, DType, LeftSelector,
                        RightSelector, BinaryOp, Reducer>
          Functors;
  typedef cuda::BinaryReduceBcast<NDim, Idx, DType, Functors> UDF;
  // csr
227
228
  auto outcsr = graph.GetOutCSRMatrix();
  minigun::Csr<Idx> csr = utils::CreateCsr<Idx>(outcsr.indptr, outcsr.indices);
229
230
231
232
  // If the user-given mapping is none and the target is edge data, we need to
  // replace the mapping by the edge ids in the csr graph so that the edge
  // data is correctly read/written.
  if (LeftSelector::target == binary_op::kEdge && gdata->lhs_mapping == nullptr) {
233
    gdata->lhs_mapping = static_cast<Idx*>(outcsr.data->data);
234
235
  }
  if (RightSelector::target == binary_op::kEdge && gdata->rhs_mapping == nullptr) {
236
    gdata->rhs_mapping = static_cast<Idx*>(outcsr.data->data);
237
238
239
  }
  if (OutSelector<Reducer>::Type::target == binary_op::kEdge
      && gdata->out_mapping == nullptr) {
240
    gdata->out_mapping = static_cast<Idx*>(outcsr.data->data);
241
242
243
244
245
246
247
248
249
250
251
252
253
  }
  // TODO(minjie): allocator
  minigun::advance::Advance<XPU, Idx, cuda::AdvanceConfig,
    BcastGData<NDim, Idx, DType>, UDF>(
        rtcfg, csr, gdata, minigun::IntArray1D<Idx>());
}

// Following macro is used to generate explicit-specialization of the template
// operator.
#define GEN_DEFINE(dtype, lhs_tgt, rhs_tgt, op)                    \
  template void CallBinaryReduce<XPU, IDX,                      \
        dtype, lhs_tgt, rhs_tgt, op<dtype>, REDUCER<XPU, dtype>>(  \
      const minigun::advance::RuntimeConfig& rtcfg,                \
254
      const CSRWrapper& graph,                                     \
255
256
257
258
259
260
261
      GData<IDX, dtype>* gdata);

#define GEN_BCAST_DEFINE(ndim, dtype, lhs_tgt, rhs_tgt, op)         \
  template void CallBinaryReduceBcast<XPU, ndim, IDX, dtype,     \
                                 lhs_tgt, rhs_tgt,                  \
                                 op<dtype>, REDUCER<XPU, dtype>>(   \
      const minigun::advance::RuntimeConfig& rtcfg,                 \
262
      const CSRWrapper& graph,                                      \
263
264
265
266
267
268
269
270
      BcastGData<ndim, IDX, dtype>* gdata);

#define EVAL(F, ...) MSVC_EXPAND(F(__VA_ARGS__))

}  // namespace kernel
}  // namespace dgl

#endif  // DGL_KERNEL_CUDA_BINARY_REDUCE_IMPL_CUH_