binary_reduce_impl.cuh 9.14 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
/*!
 *  Copyright (c) 2019 by Contributors
 * \file kernel/cuda/binary_reduce_impl.cuh
 * \brief Minigun CUDA UDFs for binary reduce
 */
#ifndef DGL_KERNEL_CUDA_BINARY_REDUCE_IMPL_CUH_
#define DGL_KERNEL_CUDA_BINARY_REDUCE_IMPL_CUH_

#include <minigun/minigun.h>
#include <dgl/immutable_graph.h>

#include "../binary_reduce_impl_decl.h"
#include "../utils.h"
#include "./functor.cuh"

namespace dgl {
namespace kernel {
namespace cuda {

// Minigun UDF to compute binary reduce.
template <typename Idx, typename DType, typename Functors>
struct BinaryReduce {
  static __device__ __forceinline__ bool CondEdge(
      Idx src, Idx dst, Idx eid, GData<Idx, DType>* gdata) {
    return true;
  }
  static __device__ __forceinline__ void ApplyEdge(
      Idx src, Idx dst, Idx eid, GData<Idx, DType>* gdata) {
    const int64_t D = gdata->x_length;
    int64_t tx = blockIdx.x * blockDim.x + threadIdx.x;
    int stride_x = blockDim.x * gridDim.x;
    Idx lid = Functors::SelectLeft(src, eid, dst);
    Idx rid = Functors::SelectRight(src, eid, dst);
    Idx oid = Functors::SelectOut(src, eid, dst);
    if (gdata->lhs_mapping) {
      lid = Functors::GetId(lid, gdata->lhs_mapping);
    }
    if (gdata->rhs_mapping) {
      rid = Functors::GetId(rid, gdata->rhs_mapping);
    }
    if (gdata->out_mapping) {
      oid = Functors::GetId(oid, gdata->out_mapping);
    }
    DType* lhsoff = gdata->lhs_data + lid * D;
    DType* rhsoff = gdata->rhs_data + rid * D;
    DType* outoff = gdata->out_data + oid * D;
    while (tx < D) {
      DType lhs = Functors::Read(lhsoff + tx);
      DType rhs = Functors::Read(rhsoff + tx);
      DType out = Functors::Op(lhs, rhs);
      Functors::Write(outoff + tx, out);
      tx += stride_x;
    }
  }
};

// Convert flattened index to multi-dimension index (assume row-major).
__device__ __forceinline__ void Unravel(
    int64_t idx, int ndim, const int64_t* shape, const int64_t* stride, int64_t* out) {
  for (int d = 0; d < ndim; ++d) {
    out[d] = (idx / stride[d]) % shape[d];
  }
}

// Convert multi-dimension index to flattened index (assume row-major).
__device__ __forceinline__ int64_t Ravel(
    const int64_t* idx, int ndim, const int64_t* shape, const int64_t* stride) {
  int64_t out = 0;
  for (int d = 0; d < ndim; ++d) {
    out += min(idx[d], shape[d] - 1) * stride[d];
  }
  return out;
}

// Minigun UDF to compute binary reduce with broadcasting.
template <int NDim, typename Idx, typename DType, typename Functors>
struct BinaryReduceBcast {
  static __device__ __forceinline__ bool CondEdge(
      Idx src, Idx dst, Idx eid, BcastGData<NDim, Idx, DType>* gdata) {
    return true;
  }
  static __device__ __forceinline__ void ApplyEdge(
      Idx src, Idx dst, Idx eid, BcastGData<NDim, Idx, DType>* gdata) {
    int64_t tx = blockIdx.x * blockDim.x + threadIdx.x;
    int stride_x = blockDim.x * gridDim.x;
    Idx lid = Functors::SelectLeft(src, eid, dst);
    Idx rid = Functors::SelectRight(src, eid, dst);
    Idx oid = Functors::SelectOut(src, eid, dst);
    if (gdata->lhs_mapping) {
      lid = Functors::GetId(lid, gdata->lhs_mapping);
    }
    if (gdata->rhs_mapping) {
      rid = Functors::GetId(rid, gdata->rhs_mapping);
    }
    if (gdata->out_mapping) {
      oid = Functors::GetId(oid, gdata->out_mapping);
    }
    DType* lhsoff = gdata->lhs_data + lid * gdata->lhs_len;
    DType* rhsoff = gdata->rhs_data + rid * gdata->rhs_len;
    DType* outoff = gdata->out_data + oid * gdata->out_len;
    int64_t tmp[NDim];  // store unraveled idx.
    while (tx < gdata->out_len) {
      Unravel(tx, gdata->ndim, gdata->out_shape, gdata->out_stride, tmp);
      DType lhs = Functors::Read(lhsoff +
          Ravel(tmp, gdata->ndim, gdata->lhs_shape, gdata->lhs_stride));
      DType rhs = Functors::Read(rhsoff +
          Ravel(tmp, gdata->ndim, gdata->rhs_shape, gdata->rhs_stride));
      DType out = Functors::Op(lhs, rhs);
      Functors::Write(outoff + tx, out);
      tx += stride_x;
    }
  }
};

// Auxiliary template used in UDF.
template <typename Idx, typename DType,
          typename LeftSelector, typename RightSelector,
          typename BinaryOp, typename Reducer>
struct FunctorsTempl {
  static __device__ __forceinline__ Idx SelectOut(
      Idx src, Idx edge, Idx dst) {
    return OutSelector<Reducer>::Type::Call(src, edge, dst);
  }
  static __device__ __forceinline__ Idx SelectLeft(
      Idx src, Idx edge, Idx dst) {
    return LeftSelector::Call(src, edge, dst);
  }
  static __device__ __forceinline__ Idx SelectRight(
      Idx src, Idx edge, Idx dst) {
    return RightSelector::Call(src, edge, dst);
  }
  static __device__ __forceinline__ DType Op(DType lhs, DType rhs) {
    return BinaryOp::Call(lhs, rhs);
  }
  static __device__ __forceinline__ DType Read(DType* addr) {
    return LDGReader<DType>::Call(addr);
  }
  static __device__ __forceinline__ void Write(DType* addr, DType val) {
    Reducer::Call(addr, val);
  }
  static __device__ __forceinline__ Idx GetId(Idx id, Idx* id_map) {
    return LDGReader<Idx>::Call(id_map + id);
  }
};

typedef minigun::advance::Config<true, minigun::advance::kV2N> AdvanceConfig;
}  // namespace cuda

// Template implementation of BinaryReduce operator.
template <int XPU, typename Idx, typename DType,
          typename LeftSelector, typename RightSelector,
          typename BinaryOp, typename Reducer>
void CallBinaryReduce(const minigun::advance::RuntimeConfig& rtcfg,
                      const ImmutableGraph* graph,
                      GData<Idx, DType>* gdata) {
  typedef cuda::FunctorsTempl<Idx, DType, LeftSelector,
                        RightSelector, BinaryOp, Reducer>
          Functors;
  typedef cuda::BinaryReduce<Idx, DType, Functors> UDF;
  // csr
  auto outcsr = graph->GetOutCSR();
  minigun::Csr<Idx> csr = utils::CreateCsr<Idx>(outcsr->indptr(), outcsr->indices());
  // If the user-given mapping is none and the target is edge data, we need to
  // replace the mapping by the edge ids in the csr graph so that the edge
  // data is correctly read/written.
  if (LeftSelector::target == binary_op::kEdge && gdata->lhs_mapping == nullptr) {
    gdata->lhs_mapping = static_cast<Idx*>(outcsr->edge_ids()->data);
  }
  if (RightSelector::target == binary_op::kEdge && gdata->rhs_mapping == nullptr) {
    gdata->rhs_mapping = static_cast<Idx*>(outcsr->edge_ids()->data);
  }
  if (OutSelector<Reducer>::Type::target == binary_op::kEdge
      && gdata->out_mapping == nullptr) {
    gdata->out_mapping = static_cast<Idx*>(outcsr->edge_ids()->data);
  }
  // TODO(minjie): allocator
  minigun::advance::Advance<XPU, Idx, cuda::AdvanceConfig, GData<Idx, DType>, UDF>(
        rtcfg, csr, gdata, minigun::IntArray1D<Idx>());
}

// Template implementation of BinaryReduce broadcasting operator.
template <int XPU, int NDim, typename Idx, typename DType,
          typename LeftSelector, typename RightSelector,
          typename BinaryOp, typename Reducer>
void CallBinaryReduceBcast(
  const minigun::advance::RuntimeConfig& rtcfg,
  const ImmutableGraph* graph,
  BcastGData<NDim, Idx, DType>* gdata) {
  typedef cuda::FunctorsTempl<Idx, DType, LeftSelector,
                        RightSelector, BinaryOp, Reducer>
          Functors;
  typedef cuda::BinaryReduceBcast<NDim, Idx, DType, Functors> UDF;
  // csr
  auto outcsr = graph->GetOutCSR();
  minigun::Csr<Idx> csr = utils::CreateCsr<Idx>(outcsr->indptr(), outcsr->indices());
  // If the user-given mapping is none and the target is edge data, we need to
  // replace the mapping by the edge ids in the csr graph so that the edge
  // data is correctly read/written.
  if (LeftSelector::target == binary_op::kEdge && gdata->lhs_mapping == nullptr) {
    gdata->lhs_mapping = static_cast<Idx*>(outcsr->edge_ids()->data);
  }
  if (RightSelector::target == binary_op::kEdge && gdata->rhs_mapping == nullptr) {
    gdata->rhs_mapping = static_cast<Idx*>(outcsr->edge_ids()->data);
  }
  if (OutSelector<Reducer>::Type::target == binary_op::kEdge
      && gdata->out_mapping == nullptr) {
    gdata->out_mapping = static_cast<Idx*>(outcsr->edge_ids()->data);
  }
  // TODO(minjie): allocator
  minigun::advance::Advance<XPU, Idx, cuda::AdvanceConfig,
    BcastGData<NDim, Idx, DType>, UDF>(
        rtcfg, csr, gdata, minigun::IntArray1D<Idx>());
}

// Following macro is used to generate explicit-specialization of the template
// operator.
#define GEN_DEFINE(dtype, lhs_tgt, rhs_tgt, op)                    \
  template void CallBinaryReduce<XPU, IDX,                      \
        dtype, lhs_tgt, rhs_tgt, op<dtype>, REDUCER<XPU, dtype>>(  \
      const minigun::advance::RuntimeConfig& rtcfg,                \
      const ImmutableGraph* graph,                                 \
      GData<IDX, dtype>* gdata);

#define GEN_BCAST_DEFINE(ndim, dtype, lhs_tgt, rhs_tgt, op)         \
  template void CallBinaryReduceBcast<XPU, ndim, IDX, dtype,     \
                                 lhs_tgt, rhs_tgt,                  \
                                 op<dtype>, REDUCER<XPU, dtype>>(   \
      const minigun::advance::RuntimeConfig& rtcfg,                 \
      const ImmutableGraph* graph,                                  \
      BcastGData<ndim, IDX, dtype>* gdata);

#define EVAL(F, ...) MSVC_EXPAND(F(__VA_ARGS__))

}  // namespace kernel
}  // namespace dgl

#endif  // DGL_KERNEL_CUDA_BINARY_REDUCE_IMPL_CUH_