train_dist.py 14.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
import os
os.environ['DGLBACKEND']='pytorch'
from multiprocessing import Process
import argparse, time, math
import numpy as np
from functools import wraps
import tqdm

import dgl
from dgl import DGLGraph
from dgl.data import register_data_args, load_data
from dgl.data.utils import load_graphs
import dgl.function as fn
import dgl.nn.pytorch as dglnn
15
from dgl.distributed import DistDataLoader
16
17
18
19
20
21
22
23

import torch as th
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.multiprocessing as mp
from torch.utils.data import DataLoader

24
def load_subtensor(g, seeds, input_nodes, device, load_feat=True):
25
26
27
    """
    Copys features and labels of a set of nodes onto GPU.
    """
28
    batch_inputs = g.ndata['features'][input_nodes].to(device) if load_feat else None
29
30
31
    batch_labels = g.ndata['labels'][seeds].to(device)
    return batch_inputs, batch_labels

32
class NeighborSampler(object):
33
    def __init__(self, g, fanouts, sample_neighbors, device, load_feat=True):
34
35
36
        self.g = g
        self.fanouts = fanouts
        self.sample_neighbors = sample_neighbors
37
        self.device = device
38
        self.load_feat=load_feat
39
40
41
42
43
44
45
46
47
48
49
50
51

    def sample_blocks(self, seeds):
        seeds = th.LongTensor(np.asarray(seeds))
        blocks = []
        for fanout in self.fanouts:
            # For each seed node, sample ``fanout`` neighbors.
            frontier = self.sample_neighbors(self.g, seeds, fanout, replace=True)
            # Then we compact the frontier into a bipartite graph for message passing.
            block = dgl.to_block(frontier, seeds)
            # Obtain the seed nodes for next layer.
            seeds = block.srcdata[dgl.NID]

            blocks.insert(0, block)
52
53
54

        input_nodes = blocks[0].srcdata[dgl.NID]
        seeds = blocks[-1].dstdata[dgl.NID]
55
56
57
        batch_inputs, batch_labels = load_subtensor(self.g, seeds, input_nodes, "cpu", self.load_feat)
        if self.load_feat:
            blocks[0].srcdata['features'] = batch_inputs
58
        blocks[-1].dstdata['labels'] = batch_labels
59
        return blocks
60

61
class DistSAGE(nn.Module):
62
63
    def __init__(self, in_feats, n_hidden, n_classes, n_layers,
                 activation, dropout):
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
        super().__init__()
        self.n_layers = n_layers
        self.n_hidden = n_hidden
        self.n_classes = n_classes
        self.layers = nn.ModuleList()
        self.layers.append(dglnn.SAGEConv(in_feats, n_hidden, 'mean'))
        for i in range(1, n_layers - 1):
            self.layers.append(dglnn.SAGEConv(n_hidden, n_hidden, 'mean'))
        self.layers.append(dglnn.SAGEConv(n_hidden, n_classes, 'mean'))
        self.dropout = nn.Dropout(dropout)
        self.activation = activation

    def forward(self, blocks, x):
        h = x
        for l, (layer, block) in enumerate(zip(self.layers, blocks)):
            h = layer(block, h)
            if l != len(self.layers) - 1:
                h = self.activation(h)
                h = self.dropout(h)
        return h
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

    def inference(self, g, x, batch_size, device):
        """
        Inference with the GraphSAGE model on full neighbors (i.e. without neighbor sampling).
        g : the entire graph.
        x : the input of entire node set.

        The inference code is written in a fashion that it could handle any number of nodes and
        layers.
        """
        # During inference with sampling, multi-layer blocks are very inefficient because
        # lots of computations in the first few layers are repeated.
        # Therefore, we compute the representation of all nodes layer by layer.  The nodes
        # on each layer are of course splitted in batches.
        # TODO: can we standardize this?
        nodes = dgl.distributed.node_split(np.arange(g.number_of_nodes()),
                                           g.get_partition_book(), force_even=True)
101
        y = dgl.distributed.DistTensor((g.number_of_nodes(), self.n_hidden), th.float32, 'h',
102
103
104
                                       persistent=True)
        for l, layer in enumerate(self.layers):
            if l == len(self.layers) - 1:
105
                y = dgl.distributed.DistTensor((g.number_of_nodes(), self.n_classes),
106
107
                                               th.float32, 'h_last', persistent=True)

108
            sampler = NeighborSampler(g, [-1], dgl.distributed.sample_neighbors, device)
109
110
            print('|V|={}, eval batch size: {}'.format(g.number_of_nodes(), batch_size))
            # Create PyTorch DataLoader for constructing blocks
111
            dataloader = DistDataLoader(
112
113
114
115
                dataset=nodes,
                batch_size=batch_size,
                collate_fn=sampler.sample_blocks,
                shuffle=False,
116
                drop_last=False)
117
118

            for blocks in tqdm.tqdm(dataloader):
119
                block = blocks[0].to(device)
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
                input_nodes = block.srcdata[dgl.NID]
                output_nodes = block.dstdata[dgl.NID]
                h = x[input_nodes].to(device)
                h_dst = h[:block.number_of_dst_nodes()]
                h = layer(block, (h, h_dst))
                if l != len(self.layers) - 1:
                    h = self.activation(h)
                    h = self.dropout(h)

                y[output_nodes] = h.cpu()

            x = y
            g.barrier()
        return y

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
def compute_acc(pred, labels):
    """
    Compute the accuracy of prediction given the labels.
    """
    labels = labels.long()
    return (th.argmax(pred, dim=1) == labels).float().sum() / len(pred)

def evaluate(model, g, inputs, labels, val_nid, test_nid, batch_size, device):
    """
    Evaluate the model on the validation set specified by ``val_nid``.
    g : The entire graph.
    inputs : The features of all the nodes.
    labels : The labels of all the nodes.
    val_nid : the node Ids for validation.
    batch_size : Number of nodes to compute at the same time.
    device : The GPU device to evaluate on.
    """
    model.eval()
    with th.no_grad():
        pred = model.inference(g, inputs, batch_size, device)
    model.train()
    return compute_acc(pred[val_nid], labels[val_nid]), compute_acc(pred[test_nid], labels[test_nid])

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
def pad_data(nids):
    """
    In distributed traning scenario, we need to make sure that each worker has same number of
    batches. Otherwise the synchronization(barrier) is called diffirent times, which results in
    the worker with more batches hangs up.

    This function pads the nids to the same size for all workers, by repeating the head ids till
    the maximum size among all workers.
    """
    import torch.distributed as dist
    num_nodes = th.tensor(nids.numel())
    dist.all_reduce(num_nodes, dist.ReduceOp.MAX)
    max_num_nodes = int(num_nodes)
    nids_length = nids.shape[0]
    if max_num_nodes > nids_length:
        pad_size = max_num_nodes % nids_length
        repeat_size = max_num_nodes // nids_length
Jinjing Zhou's avatar
Jinjing Zhou committed
175
        new_nids = th.cat([nids for _ in range(repeat_size)] + [nids[:pad_size]], axis=0)
176
177
178
179
180
181
182
        print("Pad nids from {} to {}".format(nids_length, max_num_nodes))
    else:
        new_nids = nids
    assert new_nids.shape[0] == max_num_nodes
    return new_nids


183
184
def run(args, device, data):
    # Unpack data
185
    train_nid, val_nid, test_nid, in_feats, n_classes, g = data
186
    train_nid = pad_data(train_nid)
187
188
    # Create sampler
    sampler = NeighborSampler(g, [int(fanout) for fanout in args.fan_out.split(',')],
189
                              dgl.distributed.sample_neighbors, device)
190

191
192
    # Create DataLoader for constructing blocks
    dataloader = DistDataLoader(
193
194
195
196
        dataset=train_nid.numpy(),
        batch_size=args.batch_size,
        collate_fn=sampler.sample_blocks,
        shuffle=True,
197
        drop_last=False)
198
199

    # Define model and optimizer
200
    model = DistSAGE(in_feats, args.num_hidden, n_classes, args.num_layers, F.relu, args.dropout)
201
    model = model.to(device)
202
    if not args.standalone:
203
204
205
206
207
        if args.num_gpus == -1:
            model = th.nn.parallel.DistributedDataParallel(model)
        else:
            dev_id = g.rank() % args.num_gpus
            model = th.nn.parallel.DistributedDataParallel(model, device_ids=[dev_id], output_device=dev_id)
208
209
210
211
212
213
214
215
216
    loss_fcn = nn.CrossEntropyLoss()
    loss_fcn = loss_fcn.to(device)
    optimizer = optim.Adam(model.parameters(), lr=args.lr)

    train_size = th.sum(g.ndata['train_mask'][0:g.number_of_nodes()])

    # Training loop
    iter_tput = []
    epoch = 0
217
    for epoch in range(args.num_epochs):
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
        tic = time.time()

        sample_time = 0
        forward_time = 0
        backward_time = 0
        update_time = 0
        num_seeds = 0
        num_inputs = 0
        start = time.time()
        # Loop over the dataloader to sample the computation dependency graph as a list of
        # blocks.
        step_time = []
        for step, blocks in enumerate(dataloader):
            tic_step = time.time()
            sample_time += tic_step - start

            # The nodes for input lies at the LHS side of the first block.
            # The nodes for output lies at the RHS side of the last block.
236
237
            batch_inputs = blocks[0].srcdata['features']
            batch_labels = blocks[-1].dstdata['labels']
238
            batch_labels = batch_labels.long()
239
240
241

            num_seeds += len(blocks[-1].dstdata[dgl.NID])
            num_inputs += len(blocks[0].srcdata[dgl.NID])
242
243
            blocks = [block.to(device) for block in blocks]
            batch_labels = batch_labels.to(device)
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
            # Compute loss and prediction
            start = time.time()
            batch_pred = model(blocks, batch_inputs)
            loss = loss_fcn(batch_pred, batch_labels)
            forward_end = time.time()
            optimizer.zero_grad()
            loss.backward()
            compute_end = time.time()
            forward_time += forward_end - start
            backward_time += compute_end - forward_end

            optimizer.step()
            update_time += time.time() - compute_end

            step_t = time.time() - tic_step
            step_time.append(step_t)
Qidong Su's avatar
Qidong Su committed
260
            iter_tput.append(len(blocks[-1].dstdata[dgl.NID]) / step_t)
261
262
263
            if step % args.log_every == 0:
                acc = compute_acc(batch_pred, batch_labels)
                gpu_mem_alloc = th.cuda.max_memory_allocated() / 1000000 if th.cuda.is_available() else 0
maqy1995's avatar
maqy1995 committed
264
                print('Part {} | Epoch {:05d} | Step {:05d} | Loss {:.4f} | Train Acc {:.4f} | Speed (samples/sec) {:.4f} | GPU {:.1f} MB | time {:.3f} s'.format(
265
                    g.rank(), epoch, step, loss.item(), acc.item(), np.mean(iter_tput[3:]), gpu_mem_alloc, np.sum(step_time[-args.log_every:])))
266
267
268
            start = time.time()

        toc = time.time()
269
270
        print('Part {}, Epoch Time(s): {:.4f}, sample+data_copy: {:.4f}, forward: {:.4f}, backward: {:.4f}, update: {:.4f}, #seeds: {}, #inputs: {}'.format(
            g.rank(), toc - tic, sample_time, forward_time, backward_time, update_time, num_seeds, num_inputs))
271
272
273
        epoch += 1


274
275
        if epoch % args.eval_every == 0 and epoch != 0:
            start = time.time()
276
277
278
279
            val_acc, test_acc = evaluate(model.module, g, g.ndata['features'],
                                         g.ndata['labels'], val_nid, test_nid, args.batch_size_eval, device)
            print('Part {}, Val Acc {:.4f}, Test Acc {:.4f}, time: {:.4f}'.format(g.rank(), val_acc, test_acc,
                                                                                  time.time() - start))
280
281

def main(args):
282
    dgl.distributed.initialize(args.ip_config)
283
284
    if not args.standalone:
        th.distributed.init_process_group(backend='gloo')
285
    g = dgl.distributed.DistGraph(args.graph_name, part_config=args.part_config)
286
    print('rank:', g.rank())
287

288
    pb = g.get_partition_book()
289
290
291
292
293
294
295
296
297
298
299
    if 'trainer_id' in g.ndata:
        train_nid = dgl.distributed.node_split(g.ndata['train_mask'], pb, force_even=True,
                                               node_trainer_ids=g.ndata['trainer_id'])
        val_nid = dgl.distributed.node_split(g.ndata['val_mask'], pb, force_even=True,
                                             node_trainer_ids=g.ndata['trainer_id'])
        test_nid = dgl.distributed.node_split(g.ndata['test_mask'], pb, force_even=True,
                                              node_trainer_ids=g.ndata['trainer_id'])
    else:
        train_nid = dgl.distributed.node_split(g.ndata['train_mask'], pb, force_even=True)
        val_nid = dgl.distributed.node_split(g.ndata['val_mask'], pb, force_even=True)
        test_nid = dgl.distributed.node_split(g.ndata['test_mask'], pb, force_even=True)
300
301
302
303
304
    local_nid = pb.partid2nids(pb.partid).detach().numpy()
    print('part {}, train: {} (local: {}), val: {} (local: {}), test: {} (local: {})'.format(
        g.rank(), len(train_nid), len(np.intersect1d(train_nid.numpy(), local_nid)),
        len(val_nid), len(np.intersect1d(val_nid.numpy(), local_nid)),
        len(test_nid), len(np.intersect1d(test_nid.numpy(), local_nid))))
305
306
307
    if args.num_gpus == -1:
        device = th.device('cpu')
    else:
308
        device = th.device('cuda:'+str(args.local_rank))
309
310
311
    labels = g.ndata['labels'][np.arange(g.number_of_nodes())]
    n_classes = len(th.unique(labels[th.logical_not(th.isnan(labels))]))
    print('#labels:', n_classes)
312
313
314

    # Pack data
    in_feats = g.ndata['features'].shape[1]
315
    data = train_nid, val_nid, test_nid, in_feats, n_classes, g
316
317
318
319
320
321
    run(args, device, data)
    print("parent ends")

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='GCN')
    register_data_args(parser)
322
    parser.add_argument('--graph_name', type=str, help='graph name')
323
324
    parser.add_argument('--id', type=int, help='the partition id')
    parser.add_argument('--ip_config', type=str, help='The file for IP configuration')
325
    parser.add_argument('--part_config', type=str, help='The path to the partition config file')
326
327
    parser.add_argument('--num_clients', type=int, help='The number of clients')
    parser.add_argument('--n_classes', type=int, help='the number of classes')
328
    parser.add_argument('--num_gpus', type=int, default=-1,
329
                        help="the number of GPU device. Use -1 for CPU training")
330
331
332
333
334
335
336
337
    parser.add_argument('--num_epochs', type=int, default=20)
    parser.add_argument('--num_hidden', type=int, default=16)
    parser.add_argument('--num_layers', type=int, default=2)
    parser.add_argument('--fan_out', type=str, default='10,25')
    parser.add_argument('--batch_size', type=int, default=1000)
    parser.add_argument('--batch_size_eval', type=int, default=100000)
    parser.add_argument('--log_every', type=int, default=20)
    parser.add_argument('--eval_every', type=int, default=5)
338
339
340
    parser.add_argument('--lr', type=float, default=0.003)
    parser.add_argument('--dropout', type=float, default=0.5)
    parser.add_argument('--local_rank', type=int, help='get rank of the process')
341
    parser.add_argument('--standalone', action='store_true', help='run in the standalone mode')
342
343
344
    args = parser.parse_args()

    print(args)
345
    main(args)