kernel.cc 9 KB
Newer Older
1
2
3
4
5
6
7
8
/*!
 *  Copyright (c) 2020 by Contributors
 * \file array/kernel.cc
 * \brief New kernels
 */
#include <dgl/packed_func_ext.h>
#include <dgl/base_heterograph.h>

Zhi Lin's avatar
Zhi Lin committed
9
10
11
12
#ifdef USE_TVM
#include <featgraph.h>
#endif  // USE_TVM

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
#include "kernel_decl.h"
#include "../c_api_common.h"

using namespace dgl::runtime;

namespace dgl {
namespace aten {
namespace {

// Check whether the given arguments have the same context.
inline void CheckCtx(
    const DLContext& ctx,
    const std::vector<NDArray>& arrays,
    const std::vector<std::string>& names) {
  for (size_t i = 0; i < arrays.size(); ++i) {
    if (IsNullArray(arrays[i]))
      continue;
    CHECK_EQ(ctx, arrays[i]->ctx)
      << "Expected device context " << ctx << ". But got "
      << arrays[i]->ctx << " for " << names[i] << ".";
  }
}

// Check whether input tensors are contiguous.
inline void CheckContiguous(
    const std::vector<NDArray>& arrays,
    const std::vector<std::string>& names) {
  for (size_t i = 0; i < arrays.size(); ++i) {
    if (IsNullArray(arrays[i]))
      continue;
    CHECK(arrays[i].IsContiguous())
      << "Expect " << names[i] << " to be a contiguous tensor";
  }
}

// Check whether input tensors have valid shape.
inline void CheckShape(
    const std::vector<uint64_t>& gdim,
    const std::vector<int>& uev_idx,
    const std::vector<NDArray>& arrays,
    const std::vector<std::string>& names) {
  for (size_t i = 0; i < arrays.size(); ++i) {
    if (IsNullArray(arrays[i]))
      continue;
    CHECK_GE(arrays[i]->ndim, 2)
      << "Expect " << names[i] << " to have ndim >= 2, "
      << "Note that for scalar feature we expand its "
      << "dimension with an additional dimension of "
      << "length one.";
    CHECK_EQ(gdim[uev_idx[i]], arrays[i]->shape[0])
      << "Expect " << names[i] << " to have size "
      << gdim[uev_idx[i]] << " on the first dimension, "
      << "but got " << arrays[i]->shape[0];
  }
}

}  // namespace

/*! \brief Generalized Sparse Matrix-Matrix Multiplication. */
void SpMM(const std::string& op, const std::string& reduce,
          HeteroGraphPtr graph,
          NDArray ufeat,
          NDArray efeat,
          NDArray out,
77
          std::vector<NDArray> out_aux) {
78
  // TODO(zihao): format tuning
79
  SparseFormat format = graph->SelectFormat(0, csc_code);
80
81
82
83
84
  const auto& bcast = CalcBcastOff(op, ufeat, efeat);

  ATEN_XPU_SWITCH_CUDA(graph->Context().device_type, XPU, "SpMM", {
    ATEN_ID_TYPE_SWITCH(graph->DataType(), IdType, {
      ATEN_FLOAT_TYPE_SWITCH(out->dtype, DType, "Feature data", {
85
        if (format == SparseFormat::kCSC) {
86
87
88
89
90
91
92
93
          SpMMCsr<XPU, IdType, DType>(
              op, reduce, bcast, graph->GetCSCMatrix(0),
              ufeat, efeat, out, out_aux);
        } else if (format == SparseFormat::kCOO) {
          SpMMCoo<XPU, IdType, DType>(
              op, reduce, bcast, graph->GetCOOMatrix(0),
              ufeat, efeat, out, out_aux);
        } else {
94
          LOG(FATAL) << "SpMM only supports CSC and COO foramts";
95
96
97
98
99
100
101
102
103
        }
      });
    });
  });
}

/*! \brief Generalized Sampled Dense-Dense Matrix Multiplication. */
void SDDMM(const std::string& op,
           HeteroGraphPtr graph,
104
105
           NDArray lhs,
           NDArray rhs,
106
           NDArray out,
107
           int lhs_target,
108
           int rhs_target) {
109
  // TODO(zihao): format tuning
110
111
  SparseFormat format = graph->SelectFormat(0, coo_code);
  const auto &bcast = CalcBcastOff(op, lhs, rhs);
112
113
114
115
116
117
118

  ATEN_XPU_SWITCH_CUDA(graph->Context().device_type, XPU, "SDDMM", {
    ATEN_ID_TYPE_SWITCH(graph->DataType(), IdType, {
      ATEN_FLOAT_TYPE_SWITCH(out->dtype, DType, "Feature data", {
        if (format == SparseFormat::kCSR) {
          SDDMMCsr<XPU, IdType, DType>(
              op, bcast, graph->GetCSRMatrix(0),
119
              lhs, rhs, out, lhs_target, rhs_target);
120
121
122
        } else if (format == SparseFormat::kCOO) {
          SDDMMCoo<XPU, IdType, DType>(
              op, bcast, graph->GetCOOMatrix(0),
123
              lhs, rhs, out, lhs_target, rhs_target);
124
125
126
127
128
129
130
131
        } else {
          LOG(FATAL) << "SDDMM only supports CSR and COO foramts";
        }
      });
    });
  });
}

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
/*! \brief Segment reduce dispatch function. */
void SegmentReduceDispatch(const std::string& op,
                           NDArray feat,
                           NDArray offsets,
                           NDArray out,
                           NDArray arg) {
  ATEN_XPU_SWITCH_CUDA(feat->ctx.device_type, XPU, "SegmentReduce", {
    ATEN_ID_TYPE_SWITCH(offsets->dtype, IdType, {
      ATEN_FLOAT_TYPE_SWITCH(feat->dtype, DType, "Feature data", {
          SegmentReduce<XPU, IdType, DType>(op, feat, offsets, out, arg);
      });
    });
  });
}

/*! \brief Backward segment cmp dispatch function.*/
void BackwardSegmentCmpDispatch(NDArray feat, NDArray arg, NDArray out) {
  ATEN_XPU_SWITCH_CUDA(feat->ctx.device_type, XPU, "BackwardSegmentCmp", {
    ATEN_ID_TYPE_SWITCH(arg->dtype, IdType, {
      ATEN_FLOAT_TYPE_SWITCH(feat->dtype, DType, "Feature data", {
        BackwardSegmentCmp<XPU, IdType, DType>(feat, arg, out);
      });
    });
  });
}

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelSpMM")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    HeteroGraphRef graph = args[0];
    const std::string op = args[1];
    const std::string reduce_op = args[2];
    NDArray U = args[3];
    NDArray E = args[4];
    NDArray V = args[5];
    NDArray ArgU = args[6];
    NDArray ArgE = args[7];
    CheckCtx(graph->Context(), {U, E, V, ArgU, ArgE},
        {"U_data", "E_data", "out", "Arg_U", "Arg_E"});
    CheckContiguous({U, E, V, ArgU, ArgE},
        {"U_data", "E_data", "out", "Arg_U", "Arg_E"});
    CHECK_EQ(graph->NumEdgeTypes(), 1);
    auto pair = graph->meta_graph()->FindEdge(0);  // only one etype in the graph.
    const dgl_type_t src_vtype = pair.first;
    const dgl_type_t dst_vtype = pair.second;
    CheckShape(
        {graph->NumVertices(src_vtype), graph->NumEdges(0), graph->NumVertices(dst_vtype)},
        {0, 1, 2, 2, 2},
        {U, E, V, ArgU, ArgE},
        {"U_data", "E_data", "out", "Arg_U", "Arg_E"});
181
    SpMM(op, reduce_op, graph.sptr(), U, E, V, {ArgU, ArgE});
182
183
184
185
186
187
  });

DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelSDDMM")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    HeteroGraphRef graph = args[0];
    const std::string op = args[1];
188
189
190
191
192
193
194
    NDArray lhs = args[2];
    NDArray rhs = args[3];
    NDArray out = args[4];
    int lhs_target = args[5];
    int rhs_target = args[6];
    CheckCtx(graph->Context(), {lhs, rhs, out}, {"lhs", "rhs", "out"});
    CheckContiguous({lhs, rhs, out}, {"lhs", "rhs", "out"});
195
196
197
198
199
200
    CHECK_EQ(graph->NumEdgeTypes(), 1);
    auto pair = graph->meta_graph()->FindEdge(0);  // only one etype in the graph.
    const dgl_type_t src_vtype = pair.first;
    const dgl_type_t dst_vtype = pair.second;
    CheckShape(
        {graph->NumVertices(src_vtype), graph->NumEdges(0), graph->NumVertices(dst_vtype)},
201
202
        {lhs_target, rhs_target, 1},
        {lhs, rhs, out},
203
        {"U_data", "E_data", "V_data"});
204
    SDDMM(op, graph.sptr(), lhs, rhs, out, lhs_target, rhs_target);
205
206
  });

207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelSegmentReduce")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    const std::string op = args[0];
    NDArray feat = args[1];
    NDArray offsets = args[2];
    NDArray out = args[3];
    NDArray arg = args[4];
    CheckCtx(feat->ctx, {feat, offsets, out}, {"feat", "offsets", "out"});
    CheckContiguous({feat, offsets, out}, {"feat", "offsets", "out"});
    SegmentReduceDispatch(op, feat, offsets, out, arg);
  });

DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelBwdSegmentCmp")
.set_body([](DGLArgs args, DGLRetValue *rv) {
    NDArray feat = args[0];
    NDArray arg = args[1];
    NDArray out = args[2];
    CheckCtx(feat->ctx, {feat, arg, out}, {"feat", "arg", "out"});
    CheckContiguous({feat, arg, out}, {"feat", "arg", "out"});
    BackwardSegmentCmpDispatch(feat, arg, out);
Zhi Lin's avatar
Zhi Lin committed
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
  });

#ifdef USE_TVM
DGL_REGISTER_GLOBAL("sparse._CAPI_FG_LoadModule")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    const std::string path = args[0];
    dgl::featgraph::LoadFeatGraphModule(path);
  });

DGL_REGISTER_GLOBAL("sparse._CAPI_FG_SDDMMTreeReduction")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    HeteroGraphRef graph = args[0];
    NDArray lhs = args[1];
    NDArray rhs = args[2];
    NDArray out = args[3];
    CheckCtx(graph->Context(), {lhs, rhs, out}, {"lhs", "rhs", "out"});
    CheckContiguous({lhs, rhs, out}, {"lhs", "rhs", "out"});
    CHECK_EQ(graph->NumEdgeTypes(), 1);
    // auto pair = graph->meta_graph()->FindEdge(0);  // only one etype in the graph.
    // const dgl_type_t src_vtype = pair.first;
    // const dgl_type_t dst_vtype = pair.second;
    // CheckShape(
    //     {graph->NumVertices(src_vtype), graph->NumEdges(0), graph->NumVertices(dst_vtype)},
    //     {lhs_target, rhs_target, 1},
    //     {lhs, rhs, out},
    //     {"U_data", "E_data", "V_data"});
    COOMatrix coo = graph.sptr()->GetCOOMatrix(0);
    dgl::featgraph::SDDMMTreeReduction(coo.row.ToDLPack(), coo.col.ToDLPack(),
                                       lhs.ToDLPack(), rhs.ToDLPack(), out.ToDLPack());
  });
#endif  // USE_TVM

259

260
261
}  // namespace aten
}  // namespace dgl