"vscode:/vscode.git/clone" did not exist on "b84de903a250116bc5bce38d3fcccb86d2d3ae16"
spmat_op_impl.cc 27 KB
Newer Older
1
2
3
4
5
6
7
8
/*!
 *  Copyright (c) 2019 by Contributors
 * \file array/cpu/spmat_op_impl.cc
 * \brief Sparse matrix operator CPU implementation
 */
#include <dgl/array.h>
#include <vector>
#include <unordered_set>
9
#include <numeric>
10
#include "array_utils.h"
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

namespace dgl {

using runtime::NDArray;

namespace aten {
namespace impl {

///////////////////////////// CSRIsNonZero /////////////////////////////

template <DLDeviceType XPU, typename IdType>
bool CSRIsNonZero(CSRMatrix csr, int64_t row, int64_t col) {
  CHECK(row >= 0 && row < csr.num_rows) << "Invalid row index: " << row;
  CHECK(col >= 0 && col < csr.num_cols) << "Invalid col index: " << col;
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices_data = static_cast<IdType*>(csr.indices->data);
Da Zheng's avatar
Da Zheng committed
27
28
29
30
31
32
33
34
35
  if (csr.sorted) {
    const IdType *start = indices_data + indptr_data[row];
    const IdType *end = indices_data + indptr_data[row + 1];
    return std::binary_search(start, end, col);
  } else {
    for (IdType i = indptr_data[row]; i < indptr_data[row + 1]; ++i) {
      if (indices_data[i] == col) {
        return true;
      }
36
37
38
39
40
41
42
43
44
45
    }
  }
  return false;
}

template bool CSRIsNonZero<kDLCPU, int32_t>(CSRMatrix, int64_t, int64_t);
template bool CSRIsNonZero<kDLCPU, int64_t>(CSRMatrix, int64_t, int64_t);

template <DLDeviceType XPU, typename IdType>
NDArray CSRIsNonZero(CSRMatrix csr, NDArray row, NDArray col) {
46
47
  CHECK_SAME_DTYPE(csr.indices, row);
  CHECK_SAME_DTYPE(csr.indices, col);
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
  const auto rowlen = row->shape[0];
  const auto collen = col->shape[0];
  const auto rstlen = std::max(rowlen, collen);
  NDArray rst = NDArray::Empty({rstlen}, row->dtype, row->ctx);
  IdType* rst_data = static_cast<IdType*>(rst->data);
  const IdType* row_data = static_cast<IdType*>(row->data);
  const IdType* col_data = static_cast<IdType*>(col->data);
  const int64_t row_stride = (rowlen == 1 && collen != 1) ? 0 : 1;
  const int64_t col_stride = (collen == 1 && rowlen != 1) ? 0 : 1;
  for (int64_t i = 0, j = 0; i < rowlen && j < collen; i += row_stride, j += col_stride) {
    *(rst_data++) = CSRIsNonZero<XPU, IdType>(csr, row_data[i], col_data[j])? 1 : 0;
  }
  return rst;
}

template NDArray CSRIsNonZero<kDLCPU, int32_t>(CSRMatrix, NDArray, NDArray);
template NDArray CSRIsNonZero<kDLCPU, int64_t>(CSRMatrix, NDArray, NDArray);

///////////////////////////// CSRHasDuplicate /////////////////////////////

template <DLDeviceType XPU, typename IdType>
bool CSRHasDuplicate(CSRMatrix csr) {
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices_data = static_cast<IdType*>(csr.indices->data);
  for (IdType src = 0; src < csr.num_rows; ++src) {
    std::unordered_set<IdType> hashmap;
    for (IdType eid = indptr_data[src]; eid < indptr_data[src+1]; ++eid) {
      const IdType dst = indices_data[eid];
      if (hashmap.count(dst)) {
        return true;
      } else {
        hashmap.insert(dst);
      }
    }
  }
  return false;
}

template bool CSRHasDuplicate<kDLCPU, int32_t>(CSRMatrix csr);
template bool CSRHasDuplicate<kDLCPU, int64_t>(CSRMatrix csr);

///////////////////////////// CSRGetRowNNZ /////////////////////////////

template <DLDeviceType XPU, typename IdType>
int64_t CSRGetRowNNZ(CSRMatrix csr, int64_t row) {
  CHECK(row >= 0 && row < csr.num_rows) << "Invalid row index: " << row;
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  return indptr_data[row + 1] - indptr_data[row];
}

template int64_t CSRGetRowNNZ<kDLCPU, int32_t>(CSRMatrix, int64_t);
template int64_t CSRGetRowNNZ<kDLCPU, int64_t>(CSRMatrix, int64_t);

template <DLDeviceType XPU, typename IdType>
NDArray CSRGetRowNNZ(CSRMatrix csr, NDArray rows) {
103
  CHECK_SAME_DTYPE(csr.indices, rows);
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
  const auto len = rows->shape[0];
  const IdType* vid_data = static_cast<IdType*>(rows->data);
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  NDArray rst = NDArray::Empty({len}, rows->dtype, rows->ctx);
  IdType* rst_data = static_cast<IdType*>(rst->data);
  for (int64_t i = 0; i < len; ++i) {
    const auto vid = vid_data[i];
    rst_data[i] = indptr_data[vid + 1] - indptr_data[vid];
  }
  return rst;
}

template NDArray CSRGetRowNNZ<kDLCPU, int32_t>(CSRMatrix, NDArray);
template NDArray CSRGetRowNNZ<kDLCPU, int64_t>(CSRMatrix, NDArray);

///////////////////////////// CSRGetRowColumnIndices /////////////////////////////

template <DLDeviceType XPU, typename IdType>
NDArray CSRGetRowColumnIndices(CSRMatrix csr, int64_t row) {
  CHECK(row >= 0 && row < csr.num_rows) << "Invalid row index: " << row;
  const int64_t len = impl::CSRGetRowNNZ<XPU, IdType>(csr, row);
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const int64_t offset = indptr_data[row] * sizeof(IdType);
  return csr.indices.CreateView({len}, csr.indices->dtype, offset);
}

template NDArray CSRGetRowColumnIndices<kDLCPU, int32_t>(CSRMatrix, int64_t);
template NDArray CSRGetRowColumnIndices<kDLCPU, int64_t>(CSRMatrix, int64_t);

///////////////////////////// CSRGetRowData /////////////////////////////

135
template <DLDeviceType XPU, typename IdType>
136
137
138
139
NDArray CSRGetRowData(CSRMatrix csr, int64_t row) {
  CHECK(row >= 0 && row < csr.num_rows) << "Invalid row index: " << row;
  const int64_t len = impl::CSRGetRowNNZ<XPU, IdType>(csr, row);
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
140
141
142
143
144
  const int64_t offset = indptr_data[row] * sizeof(IdType);
  if (CSRHasData(csr))
    return csr.data.CreateView({len}, csr.data->dtype, offset);
  else
    return aten::Range(offset, offset + len, csr.indptr->dtype.bits, csr.indptr->ctx);
145
146
}

147
148
template NDArray CSRGetRowData<kDLCPU, int32_t>(CSRMatrix, int64_t);
template NDArray CSRGetRowData<kDLCPU, int64_t>(CSRMatrix, int64_t);
149
150
151

///////////////////////////// CSRGetData /////////////////////////////

152
153
template <DLDeviceType XPU, typename IdType>
void CollectDataFromSorted(const IdType *indices_data, const IdType *data,
Da Zheng's avatar
Da Zheng committed
154
                           const IdType start, const IdType end, const IdType col,
155
                           std::vector<IdType> *ret_vec) {
Da Zheng's avatar
Da Zheng committed
156
157
158
159
160
161
162
163
164
  const IdType *start_ptr = indices_data + start;
  const IdType *end_ptr = indices_data + end;
  auto it = std::lower_bound(start_ptr, end_ptr, col);
  // This might be a multi-graph. We need to collect all of the matched
  // columns.
  for (; it != end_ptr; it++) {
    // If the col exist
    if (*it == col) {
      IdType idx = it - indices_data;
165
      ret_vec->push_back(data? data[idx] : idx);
Da Zheng's avatar
Da Zheng committed
166
167
168
169
170
171
172
    } else {
      // If we find a column that is different, we can stop searching now.
      break;
    }
  }
}

173
template <DLDeviceType XPU, typename IdType>
174
175
176
NDArray CSRGetData(CSRMatrix csr, int64_t row, int64_t col) {
  CHECK(row >= 0 && row < csr.num_rows) << "Invalid row index: " << row;
  CHECK(col >= 0 && col < csr.num_cols) << "Invalid col index: " << col;
177
  std::vector<IdType> ret_vec;
178
179
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices_data = static_cast<IdType*>(csr.indices->data);
180
  const IdType* data = CSRHasData(csr)? static_cast<IdType*>(csr.data->data) : nullptr;
Da Zheng's avatar
Da Zheng committed
181
  if (csr.sorted) {
182
183
184
    CollectDataFromSorted<XPU, IdType>(indices_data, data,
                                       indptr_data[row], indptr_data[row + 1],
                                       col, &ret_vec);
Da Zheng's avatar
Da Zheng committed
185
186
187
  } else {
    for (IdType i = indptr_data[row]; i < indptr_data[row+1]; ++i) {
      if (indices_data[i] == col) {
188
        ret_vec.push_back(data? data[i] : i);
Da Zheng's avatar
Da Zheng committed
189
      }
190
191
    }
  }
192
  return NDArray::FromVector(ret_vec, csr.data->ctx);
193
194
}

195
196
template NDArray CSRGetData<kDLCPU, int32_t>(CSRMatrix, int64_t, int64_t);
template NDArray CSRGetData<kDLCPU, int64_t>(CSRMatrix, int64_t, int64_t);
197

198
template <DLDeviceType XPU, typename IdType>
199
NDArray CSRGetData(CSRMatrix csr, NDArray rows, NDArray cols) {
200
201
  CHECK_SAME_DTYPE(csr.indices, rows);
  CHECK_SAME_DTYPE(csr.indices, cols);
202
203
204
205
206
207
208
209
210
211
212
213
214
  const int64_t rowlen = rows->shape[0];
  const int64_t collen = cols->shape[0];

  CHECK((rowlen == collen) || (rowlen == 1) || (collen == 1))
    << "Invalid row and col id array.";

  const int64_t row_stride = (rowlen == 1 && collen != 1) ? 0 : 1;
  const int64_t col_stride = (collen == 1 && rowlen != 1) ? 0 : 1;
  const IdType* row_data = static_cast<IdType*>(rows->data);
  const IdType* col_data = static_cast<IdType*>(cols->data);

  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices_data = static_cast<IdType*>(csr.indices->data);
215
  const IdType* data = CSRHasData(csr)? static_cast<IdType*>(csr.data->data) : nullptr;
216

217
  std::vector<IdType> ret_vec;
218
219
220
221
222

  for (int64_t i = 0, j = 0; i < rowlen && j < collen; i += row_stride, j += col_stride) {
    const IdType row_id = row_data[i], col_id = col_data[j];
    CHECK(row_id >= 0 && row_id < csr.num_rows) << "Invalid row index: " << row_id;
    CHECK(col_id >= 0 && col_id < csr.num_cols) << "Invalid col index: " << col_id;
Da Zheng's avatar
Da Zheng committed
223
    if (csr.sorted) {
224
225
226
      CollectDataFromSorted<XPU, IdType>(indices_data, data,
                                         indptr_data[row_id], indptr_data[row_id + 1],
                                         col_id, &ret_vec);
Da Zheng's avatar
Da Zheng committed
227
228
229
    } else {
      for (IdType i = indptr_data[row_id]; i < indptr_data[row_id+1]; ++i) {
        if (indices_data[i] == col_id) {
230
          ret_vec.push_back(data? data[i] : i);
Da Zheng's avatar
Da Zheng committed
231
        }
232
233
234
235
      }
    }
  }

236
  return NDArray::FromVector(ret_vec, csr.data->ctx);
237
238
}

239
240
template NDArray CSRGetData<kDLCPU, int32_t>(CSRMatrix csr, NDArray rows, NDArray cols);
template NDArray CSRGetData<kDLCPU, int64_t>(CSRMatrix csr, NDArray rows, NDArray cols);
241
242
243

///////////////////////////// CSRGetDataAndIndices /////////////////////////////

244
245
template <DLDeviceType XPU, typename IdType>
void CollectDataIndicesFromSorted(const IdType *indices_data, const IdType *data,
Da Zheng's avatar
Da Zheng committed
246
247
                                  const IdType start, const IdType end, const IdType col,
                                  std::vector<IdType> *col_vec,
248
                                  std::vector<IdType> *ret_vec) {
Da Zheng's avatar
Da Zheng committed
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
  const IdType *start_ptr = indices_data + start;
  const IdType *end_ptr = indices_data + end;
  auto it = std::lower_bound(start_ptr, end_ptr, col);
  // This might be a multi-graph. We need to collect all of the matched
  // columns.
  for (; it != end_ptr; it++) {
    // If the col exist
    if (*it == col) {
      IdType idx = it - indices_data;
      col_vec->push_back(indices_data[idx]);
      ret_vec->push_back(data[idx]);
    } else {
      // If we find a column that is different, we can stop searching now.
      break;
    }
  }
}

267
template <DLDeviceType XPU, typename IdType>
268
std::vector<NDArray> CSRGetDataAndIndices(CSRMatrix csr, NDArray rows, NDArray cols) {
269
270
  CHECK_SAME_DTYPE(csr.indices, rows);
  CHECK_SAME_DTYPE(csr.indices, cols);
271
272
273
274
275
276
277
278
279
280
281
282
283
284
  // TODO(minjie): more efficient implementation for matrix without duplicate entries
  const int64_t rowlen = rows->shape[0];
  const int64_t collen = cols->shape[0];

  CHECK((rowlen == collen) || (rowlen == 1) || (collen == 1))
    << "Invalid row and col id array.";

  const int64_t row_stride = (rowlen == 1 && collen != 1) ? 0 : 1;
  const int64_t col_stride = (collen == 1 && rowlen != 1) ? 0 : 1;
  const IdType* row_data = static_cast<IdType*>(rows->data);
  const IdType* col_data = static_cast<IdType*>(cols->data);

  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices_data = static_cast<IdType*>(csr.indices->data);
285
  const IdType* data = CSRHasData(csr)? static_cast<IdType*>(csr.data->data) : nullptr;
286
287

  std::vector<IdType> ret_rows, ret_cols;
288
  std::vector<IdType> ret_data;
289
290
291
292
293

  for (int64_t i = 0, j = 0; i < rowlen && j < collen; i += row_stride, j += col_stride) {
    const IdType row_id = row_data[i], col_id = col_data[j];
    CHECK(row_id >= 0 && row_id < csr.num_rows) << "Invalid row index: " << row_id;
    CHECK(col_id >= 0 && col_id < csr.num_cols) << "Invalid col index: " << col_id;
Da Zheng's avatar
Da Zheng committed
294
295
    if (csr.sorted) {
      // Here we collect col indices and data.
296
297
298
299
300
      CollectDataIndicesFromSorted<XPU, IdType>(indices_data, data,
                                                indptr_data[row_id],
                                                indptr_data[row_id + 1],
                                                col_id, &ret_cols,
                                                &ret_data);
Da Zheng's avatar
Da Zheng committed
301
302
303
304
305
306
307
      // We need to add row Ids.
      while (ret_rows.size() < ret_data.size()) {
        ret_rows.push_back(row_id);
      }
    } else {
      for (IdType i = indptr_data[row_id]; i < indptr_data[row_id+1]; ++i) {
        if (indices_data[i] == col_id) {
308
309
          ret_rows.push_back(row_id);
          ret_cols.push_back(col_id);
310
          ret_data.push_back(data? data[i] : i);
Da Zheng's avatar
Da Zheng committed
311
        }
312
313
314
315
      }
    }
  }

316
317
318
  return {NDArray::FromVector(ret_rows, csr.indptr->ctx),
          NDArray::FromVector(ret_cols, csr.indptr->ctx),
          NDArray::FromVector(ret_data, csr.data->ctx)};
319
320
}

321
template std::vector<NDArray> CSRGetDataAndIndices<kDLCPU, int32_t>(
322
    CSRMatrix csr, NDArray rows, NDArray cols);
323
template std::vector<NDArray> CSRGetDataAndIndices<kDLCPU, int64_t>(
324
325
326
327
328
329
    CSRMatrix csr, NDArray rows, NDArray cols);

///////////////////////////// CSRTranspose /////////////////////////////

// for a matrix of shape (N, M) and NNZ
// complexity: time O(NNZ + max(N, M)), space O(1)
330
template <DLDeviceType XPU, typename IdType>
331
332
333
334
335
336
CSRMatrix CSRTranspose(CSRMatrix csr) {
  const int64_t N = csr.num_rows;
  const int64_t M = csr.num_cols;
  const int64_t nnz = csr.indices->shape[0];
  const IdType* Ap = static_cast<IdType*>(csr.indptr->data);
  const IdType* Aj = static_cast<IdType*>(csr.indices->data);
337
  const IdType* Ax = CSRHasData(csr)? static_cast<IdType*>(csr.data->data) : nullptr;
338
339
  NDArray ret_indptr = NDArray::Empty({M + 1}, csr.indptr->dtype, csr.indptr->ctx);
  NDArray ret_indices = NDArray::Empty({nnz}, csr.indices->dtype, csr.indices->ctx);
340
  NDArray ret_data = NDArray::Empty({nnz}, csr.indptr->dtype, csr.indptr->ctx);
341
342
  IdType* Bp = static_cast<IdType*>(ret_indptr->data);
  IdType* Bi = static_cast<IdType*>(ret_indices->data);
343
  IdType* Bx = static_cast<IdType*>(ret_data->data);
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362

  std::fill(Bp, Bp + M, 0);

  for (int64_t j = 0; j < nnz; ++j) {
    Bp[Aj[j]]++;
  }

  // cumsum
  for (int64_t i = 0, cumsum = 0; i < M; ++i) {
    const IdType temp = Bp[i];
    Bp[i] = cumsum;
    cumsum += temp;
  }
  Bp[M] = nnz;

  for (int64_t i = 0; i < N; ++i) {
    for (IdType j = Ap[i]; j < Ap[i+1]; ++j) {
      const IdType dst = Aj[j];
      Bi[Bp[dst]] = i;
363
      Bx[Bp[dst]] = Ax? Ax[j] : j;
364
365
366
367
368
369
370
371
372
373
374
375
376
377
      Bp[dst]++;
    }
  }

  // correct the indptr
  for (int64_t i = 0, last = 0; i <= M; ++i) {
    IdType temp = Bp[i];
    Bp[i] = last;
    last = temp;
  }

  return CSRMatrix{csr.num_cols, csr.num_rows, ret_indptr, ret_indices, ret_data};
}

378
379
template CSRMatrix CSRTranspose<kDLCPU, int32_t>(CSRMatrix csr);
template CSRMatrix CSRTranspose<kDLCPU, int64_t>(CSRMatrix csr);
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407

///////////////////////////// CSRToCOO /////////////////////////////
template <DLDeviceType XPU, typename IdType>
COOMatrix CSRToCOO(CSRMatrix csr) {
  const int64_t nnz = csr.indices->shape[0];
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  NDArray ret_row = NDArray::Empty({nnz}, csr.indices->dtype, csr.indices->ctx);
  IdType* ret_row_data = static_cast<IdType*>(ret_row->data);
  for (IdType i = 0; i < csr.indptr->shape[0] - 1; ++i) {
    std::fill(ret_row_data + indptr_data[i],
              ret_row_data + indptr_data[i + 1],
              i);
  }
  return COOMatrix{csr.num_rows, csr.num_cols, ret_row, csr.indices, csr.data};
}

template COOMatrix CSRToCOO<kDLCPU, int32_t>(CSRMatrix csr);
template COOMatrix CSRToCOO<kDLCPU, int64_t>(CSRMatrix csr);

// complexity: time O(NNZ), space O(1)
template <DLDeviceType XPU, typename IdType>
COOMatrix CSRToCOODataAsOrder(CSRMatrix csr) {
  const int64_t N = csr.num_rows;
  const int64_t M = csr.num_cols;
  const int64_t nnz = csr.indices->shape[0];
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices_data = static_cast<IdType*>(csr.indices->data);
  // data array should have the same type as the indices arrays
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
408
  const IdType* data = CSRHasData(csr) ? static_cast<IdType*>(csr.data->data) : nullptr;
409
410
411
412
413
414
415
416
  NDArray ret_row = NDArray::Empty({nnz}, csr.indices->dtype, csr.indices->ctx);
  NDArray ret_col = NDArray::Empty({nnz}, csr.indices->dtype, csr.indices->ctx);
  IdType* ret_row_data = static_cast<IdType*>(ret_row->data);
  IdType* ret_col_data = static_cast<IdType*>(ret_col->data);
  // scatter using the indices in the data array
  for (IdType row = 0; row < N; ++row) {
    for (IdType j = indptr_data[row]; j < indptr_data[row + 1]; ++j) {
      const IdType col = indices_data[j];
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
417
418
      ret_row_data[data ? data[j] : j] = row;
      ret_col_data[data ? data[j] : j] = col;
419
420
    }
  }
421
  return COOMatrix(N, M, ret_row, ret_col);
422
423
424
425
426
427
428
}

template COOMatrix CSRToCOODataAsOrder<kDLCPU, int32_t>(CSRMatrix csr);
template COOMatrix CSRToCOODataAsOrder<kDLCPU, int64_t>(CSRMatrix csr);

///////////////////////////// CSRSliceRows /////////////////////////////

429
template <DLDeviceType XPU, typename IdType>
430
431
432
433
CSRMatrix CSRSliceRows(CSRMatrix csr, int64_t start, int64_t end) {
  const IdType* indptr = static_cast<IdType*>(csr.indptr->data);
  const int64_t num_rows = end - start;
  const int64_t nnz = indptr[end] - indptr[start];
434
435
  IdArray ret_indptr = IdArray::Empty({num_rows + 1}, csr.indptr->dtype, csr.indices->ctx);
  IdType* r_indptr = static_cast<IdType*>(ret_indptr->data);
436
437
438
439
  for (int64_t i = start; i < end + 1; ++i) {
    r_indptr[i - start] = indptr[i] - indptr[start];
  }
  // indices and data can be view arrays
440
441
442
443
444
445
446
447
448
449
450
  IdArray ret_indices = csr.indices.CreateView(
      {nnz}, csr.indices->dtype, indptr[start] * sizeof(IdType));
  IdArray ret_data;
  if (CSRHasData(csr))
    ret_data = csr.data.CreateView({nnz}, csr.data->dtype, indptr[start] * sizeof(IdType));
  else
    ret_data = aten::Range(indptr[start], indptr[end],
                           csr.indptr->dtype.bits, csr.indptr->ctx);
  return CSRMatrix(num_rows, csr.num_cols,
                   ret_indptr, ret_indices, ret_data,
                   csr.sorted);
451
452
}

453
454
template CSRMatrix CSRSliceRows<kDLCPU, int32_t>(CSRMatrix, int64_t, int64_t);
template CSRMatrix CSRSliceRows<kDLCPU, int64_t>(CSRMatrix, int64_t, int64_t);
455

456
template <DLDeviceType XPU, typename IdType>
457
CSRMatrix CSRSliceRows(CSRMatrix csr, NDArray rows) {
458
  CHECK_SAME_DTYPE(csr.indices, rows);
459
460
  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices_data = static_cast<IdType*>(csr.indices->data);
461
  const IdType* data = CSRHasData(csr)? static_cast<IdType*>(csr.data->data) : nullptr;
462
463
464
465
466
467
468
469
470
471
472
473
474
  const auto len = rows->shape[0];
  const IdType* rows_data = static_cast<IdType*>(rows->data);
  int64_t nnz = 0;
  for (int64_t i = 0; i < len; ++i) {
    IdType vid = rows_data[i];
    nnz += impl::CSRGetRowNNZ<XPU, IdType>(csr, vid);
  }

  CSRMatrix ret;
  ret.num_rows = len;
  ret.num_cols = csr.num_cols;
  ret.indptr = NDArray::Empty({len + 1}, csr.indptr->dtype, csr.indices->ctx);
  ret.indices = NDArray::Empty({nnz}, csr.indices->dtype, csr.indices->ctx);
475
476
  ret.data = NDArray::Empty({nnz}, csr.indptr->dtype, csr.indptr->ctx);
  ret.sorted = csr.sorted;
477
478
479

  IdType* ret_indptr_data = static_cast<IdType*>(ret.indptr->data);
  IdType* ret_indices_data = static_cast<IdType*>(ret.indices->data);
480
  IdType* ret_data = static_cast<IdType*>(ret.data->data);
481
482
483
484
485
486
487
  ret_indptr_data[0] = 0;
  for (int64_t i = 0; i < len; ++i) {
    const IdType rid = rows_data[i];
    // note: zero is allowed
    ret_indptr_data[i + 1] = ret_indptr_data[i] + indptr_data[rid + 1] - indptr_data[rid];
    std::copy(indices_data + indptr_data[rid], indices_data + indptr_data[rid + 1],
              ret_indices_data + ret_indptr_data[i]);
488
489
490
491
492
493
    if (data)
      std::copy(data + indptr_data[rid], data + indptr_data[rid + 1],
                ret_data + ret_indptr_data[i]);
    else
      std::iota(ret_data + ret_indptr_data[i], ret_data + ret_indptr_data[i + 1],
                indptr_data[rid]);
494
495
496
497
  }
  return ret;
}

498
499
template CSRMatrix CSRSliceRows<kDLCPU, int32_t>(CSRMatrix , NDArray);
template CSRMatrix CSRSliceRows<kDLCPU, int64_t>(CSRMatrix , NDArray);
500
501
502

///////////////////////////// CSRSliceMatrix /////////////////////////////

503
template <DLDeviceType XPU, typename IdType>
504
CSRMatrix CSRSliceMatrix(CSRMatrix csr, runtime::NDArray rows, runtime::NDArray cols) {
505
506
  CHECK_SAME_DTYPE(csr.indices, rows);
  CHECK_SAME_DTYPE(csr.indices, cols);
507
508
509
510
  IdHashMap<IdType> hashmap(cols);
  const int64_t new_nrows = rows->shape[0];
  const int64_t new_ncols = cols->shape[0];
  const IdType* rows_data = static_cast<IdType*>(rows->data);
511
  const bool has_data = CSRHasData(csr);
512
513
514

  const IdType* indptr_data = static_cast<IdType*>(csr.indptr->data);
  const IdType* indices_data = static_cast<IdType*>(csr.indices->data);
515
  const IdType* data = has_data? static_cast<IdType*>(csr.data->data) : nullptr;
516
517

  std::vector<IdType> sub_indptr, sub_indices;
518
  std::vector<IdType> sub_data;
519
520
521
522
523
524
525
526
527
528
529
530
  sub_indptr.resize(new_nrows + 1, 0);
  const IdType kInvalidId = new_ncols + 1;
  for (int64_t i = 0; i < new_nrows; ++i) {
    // NOTE: newi == i
    const IdType oldi = rows_data[i];
    CHECK(oldi >= 0 && oldi < csr.num_rows) << "Invalid row index: " << oldi;
    for (IdType p = indptr_data[oldi]; p < indptr_data[oldi + 1]; ++p) {
      const IdType oldj = indices_data[p];
      const IdType newj = hashmap.Map(oldj, kInvalidId);
      if (newj != kInvalidId) {
        ++sub_indptr[i];
        sub_indices.push_back(newj);
531
        sub_data.push_back(has_data? data[p] : p);
532
533
534
535
536
537
538
539
540
541
542
543
544
      }
    }
  }

  // cumsum sub_indptr
  for (int64_t i = 0, cumsum = 0; i < new_nrows; ++i) {
    const IdType temp = sub_indptr[i];
    sub_indptr[i] = cumsum;
    cumsum += temp;
  }
  sub_indptr[new_nrows] = sub_indices.size();

  const int64_t nnz = sub_data.size();
545
546
  NDArray sub_data_arr = NDArray::Empty({nnz}, csr.indptr->dtype, csr.indptr->ctx);
  IdType* ptr = static_cast<IdType*>(sub_data_arr->data);
547
548
  std::copy(sub_data.begin(), sub_data.end(), ptr);
  return CSRMatrix{new_nrows, new_ncols,
549
550
    NDArray::FromVector(sub_indptr, csr.indptr->ctx),
    NDArray::FromVector(sub_indices, csr.indptr->ctx),
551
552
553
    sub_data_arr};
}

554
template CSRMatrix CSRSliceMatrix<kDLCPU, int32_t>(
555
    CSRMatrix csr, runtime::NDArray rows, runtime::NDArray cols);
556
template CSRMatrix CSRSliceMatrix<kDLCPU, int64_t>(
557
558
    CSRMatrix csr, runtime::NDArray rows, runtime::NDArray cols);

Da Zheng's avatar
Da Zheng committed
559
560
///////////////////////////// CSRSort /////////////////////////////

561
562
563
564
565
566
567
568
569
570
571
template <DLDeviceType XPU, typename IdType>
void CSRSort_(CSRMatrix* csr) {
  typedef std::pair<IdType, IdType> ShufflePair;
  const int64_t num_rows = csr->num_rows;
  const int64_t nnz = csr->indices->shape[0];
  const IdType* indptr_data = static_cast<IdType*>(csr->indptr->data);
  IdType* indices_data = static_cast<IdType*>(csr->indices->data);
  if (!CSRHasData(*csr)) {
    csr->data = aten::Range(0, nnz, csr->indptr->dtype.bits, csr->indptr->ctx);
  }
  IdType* eid_data = static_cast<IdType*>(csr->data->data);
Da Zheng's avatar
Da Zheng committed
572
573
#pragma omp parallel
  {
574
    std::vector<ShufflePair> reorder_vec;
Da Zheng's avatar
Da Zheng committed
575
576
#pragma omp for
    for (int64_t row = 0; row < num_rows; row++) {
577
      const int64_t num_cols = indptr_data[row + 1] - indptr_data[row];
Da Zheng's avatar
Da Zheng committed
578
      IdType *col = indices_data + indptr_data[row];
579
      IdType *eid = eid_data + indptr_data[row];
Da Zheng's avatar
Da Zheng committed
580
581
582
583
584
585
586

      reorder_vec.resize(num_cols);
      for (int64_t i = 0; i < num_cols; i++) {
        reorder_vec[i].first = col[i];
        reorder_vec[i].second = eid[i];
      }
      std::sort(reorder_vec.begin(), reorder_vec.end(),
587
                [](const ShufflePair &e1, const ShufflePair &e2) {
Da Zheng's avatar
Da Zheng committed
588
589
590
591
592
593
594
595
                  return e1.first < e2.first;
                });
      for (int64_t i = 0; i < num_cols; i++) {
        col[i] = reorder_vec[i].first;
        eid[i] = reorder_vec[i].second;
      }
    }
  }
596
  csr->sorted = true;
Da Zheng's avatar
Da Zheng committed
597
598
}

599
600
template void CSRSort_<kDLCPU, int64_t>(CSRMatrix* csr);
template void CSRSort_<kDLCPU, int32_t>(CSRMatrix* csr);
Da Zheng's avatar
Da Zheng committed
601

Da Zheng's avatar
Da Zheng committed
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
///////////////////////////// CSRReorder /////////////////////////////

template <DLDeviceType XPU, typename IdType>
CSRMatrix CSRReorder(CSRMatrix csr, runtime::NDArray new_row_id_arr,
                     runtime::NDArray new_col_id_arr) {
  CHECK_SAME_DTYPE(csr.indices, new_row_id_arr);
  CHECK_SAME_DTYPE(csr.indices, new_col_id_arr);

  // Input CSR
  const IdType* in_indptr = static_cast<IdType*>(csr.indptr->data);
  const IdType* in_indices = static_cast<IdType*>(csr.indices->data);
  const IdType* in_data = static_cast<IdType*>(csr.data->data);
  int64_t num_rows = csr.num_rows;
  int64_t num_cols = csr.num_cols;
  int64_t nnz = csr.indices->shape[0];
  CHECK_EQ(nnz, in_indptr[num_rows]);
  CHECK_EQ(num_rows, new_row_id_arr->shape[0])
      << "The new row Id array needs to be the same as the number of rows of CSR";
  CHECK_EQ(num_cols, new_col_id_arr->shape[0])
      << "The new col Id array needs to be the same as the number of cols of CSR";

  // New row/col Ids.
  const IdType* new_row_ids = static_cast<IdType*>(new_row_id_arr->data);
  const IdType* new_col_ids = static_cast<IdType*>(new_col_id_arr->data);

  // Output CSR
  NDArray out_indptr_arr = NDArray::Empty({num_rows + 1}, csr.indptr->dtype, csr.indptr->ctx);
  NDArray out_indices_arr = NDArray::Empty({nnz}, csr.indices->dtype, csr.indices->ctx);
  NDArray out_data_arr = NDArray::Empty({nnz}, csr.data->dtype, csr.data->ctx);
  IdType *out_indptr = static_cast<IdType*>(out_indptr_arr->data);
  IdType *out_indices = static_cast<IdType*>(out_indices_arr->data);
  IdType *out_data = static_cast<IdType*>(out_data_arr->data);

  // Compute the length of rows for the new matrix.
  std::vector<IdType> new_row_lens(num_rows, -1);
#pragma omp parallel for
  for (int64_t i = 0; i < num_rows; i++) {
    int64_t new_row_id = new_row_ids[i];
    new_row_lens[new_row_id] = in_indptr[i + 1] - in_indptr[i];
  }
  // Compute the starting location of each row in the new matrix.
  out_indptr[0] = 0;
  // This is sequential. It should be pretty fast.
  for (int64_t i = 0; i < num_rows; i++) {
    CHECK_GE(new_row_lens[i], 0);
    out_indptr[i + 1] = out_indptr[i] + new_row_lens[i];
  }
  CHECK_EQ(out_indptr[num_rows], nnz);
  // Copy indieces and data with the new order.
  // Here I iterate rows in the order of the old matrix.
#pragma omp parallel for
  for (int64_t i = 0; i < num_rows; i++) {
    const IdType *in_row = in_indices + in_indptr[i];
    const IdType *in_row_data = in_data + in_indptr[i];

    int64_t new_row_id = new_row_ids[i];
    IdType *out_row = out_indices + out_indptr[new_row_id];
    IdType *out_row_data = out_data + out_indptr[new_row_id];

    int64_t row_len = new_row_lens[new_row_id];
    // Here I iterate col indices in a row in the order of the old matrix.
    for (int64_t j = 0; j < row_len; j++) {
      out_row[j] = new_col_ids[in_row[j]];
      out_row_data[j] = in_row_data[j];
    }
    // TODO(zhengda) maybe we should sort the column indices.
  }
  return CSRMatrix(num_rows, num_cols,
    out_indptr_arr, out_indices_arr, out_data_arr);
}

template CSRMatrix CSRReorder<kDLCPU, int64_t>(CSRMatrix csr, runtime::NDArray new_row_ids,
                                               runtime::NDArray new_col_ids);
template CSRMatrix CSRReorder<kDLCPU, int32_t>(CSRMatrix csr, runtime::NDArray new_row_ids,
                                               runtime::NDArray new_col_ids);

678
679
680
}  // namespace impl
}  // namespace aten
}  // namespace dgl