parmetis_preprocess.py 15.1 KB
Newer Older
1
2
3
import argparse
import logging
import os
4
import platform
5
import sys
6
from datetime import timedelta
7
from pathlib import Path
8
from timeit import default_timer as timer
9

10
11
import array_readwriter

12
13
import constants

14
15
16
import numpy as np
import pyarrow
import pyarrow.csv as csv
17
import pyarrow.parquet as pq
18
import torch
19
from utils import generate_read_list, get_idranges, get_node_types, read_json
20
21
22
23
24
25
26


def get_proc_info():
    """Helper function to get the rank from the
    environment when `mpirun` is used to run this python program.

    Please note that for mpi(openmpi) installation the rank is retrieved from the
27
28
    environment using OMPI_COMM_WORLD_RANK. For mpich it is
    retrieved from the environment using PMI_RANK.
29

30
31
32
33
34
35
    Returns:
    --------
    integer :
        Rank of the current process.
    """
    env_variables = dict(os.environ)
36
37
38
    # mpich
    if "PMI_RANK" in env_variables:
        return int(env_variables["PMI_RANK"])
39
    # openmpi
40
41
42
43
    elif "OMPI_COMM_WORLD_RANK" in env_variables:
        return int(env_variables["OMPI_COMM_WORLD_RANK"])
    else:
        return 0
44

45

46
def gen_edge_files(rank, schema_map, params):
47
48
49
50
51
52
53
54
55
56
57
58
59
    """Function to create edges files to be consumed by ParMETIS
    for partitioning purposes.

    This function creates the edge files and each of these will have the
    following format (meaning each line of these file is of the following format)
    <global_src_id> <global_dst_id>

    Here ``global`` prefix means that globally unique identifier assigned each node
    in the input graph. In this context globally unique means unique across all the
    nodes in the input graph.

    Parameters:
    -----------
60
61
    rank : int
        rank of the current process
62
63
64
65
66
67
68
    schema_map : json dictionary
        Dictionary created by reading the metadata.json file for the input dataset.
    output : string
        Location of storing the node-weights and edge files for ParMETIS.
    """
    type_nid_dict, ntype_gnid_offset = get_idranges(
        schema_map[constants.STR_NODE_TYPE],
69
70
71
72
73
74
        dict(
            zip(
                schema_map[constants.STR_NODE_TYPE],
                schema_map[constants.STR_NUM_NODES_PER_TYPE],
            )
        ),
75
76
77
78
79
80
81
    )

    # Regenerate edge files here.
    edge_data = schema_map[constants.STR_EDGES]
    etype_names = schema_map[constants.STR_EDGE_TYPE]
    etype_name_idmap = {e: idx for idx, e in enumerate(etype_names)}

82
    outdir = Path(params.output_dir)
83
84
    os.makedirs(outdir, exist_ok=True)
    edge_files = []
85
    num_parts = params.num_parts
86
    for etype_name, etype_info in edge_data.items():
87
88
        edges_format = etype_info[constants.STR_FORMAT][constants.STR_NAME]
        edge_data_files = etype_info[constants.STR_DATA]
89
90
91
92
93
94
95
96
97

        # ``edgetype`` strings are in canonical format, src_node_type:edge_type:dst_node_type
        tokens = etype_name.split(":")
        assert len(tokens) == 3

        src_ntype_name = tokens[0]
        rel_name = tokens[1]
        dst_ntype_name = tokens[2]

98
99
100
        def process_and_write_back(data_df, idx):
            data_f0 = data_df[:, 0]
            data_f1 = data_df[:, 1]
101

102
103
104
105
            global_src_id = data_f0 + ntype_gnid_offset[src_ntype_name][0, 0]
            global_dst_id = data_f1 + ntype_gnid_offset[dst_ntype_name][0, 0]
            cols = [global_src_id, global_dst_id]
            col_names = ["global_src_id", "global_dst_id"]
106

107
            out_file = edge_data_files[idx].split("/")[-1]
108
            out_file = os.path.join(outdir, "edges_{}".format(out_file))
109

110
111
112
113
            # TODO(thvasilo): We should support writing to the same format as the input
            options = csv.WriteOptions(include_header=False, delimiter=" ")
            options.delimiter = " "
            csv.write_csv(
114
115
116
                pyarrow.Table.from_arrays(cols, names=col_names),
                out_file,
                options,
117
118
119
            )
            return out_file

120
121
122
123
        # handle any no. of files case here.
        file_idxes = generate_read_list(len(edge_data_files), params.num_parts)
        for idx in file_idxes[rank]:
            reader_fmt_meta = {
124
                "name": etype_info[constants.STR_FORMAT][constants.STR_NAME],
125
            }
126
127
128
129
            if reader_fmt_meta["name"] == constants.STR_CSV:
                reader_fmt_meta["delimiter"] = etype_info[constants.STR_FORMAT][
                    constants.STR_FORMAT_DELIMITER
                ]
130
            data_df = array_readwriter.get_array_parser(**reader_fmt_meta).read(
131
                os.path.join(params.input_dir, edge_data_files[idx])
132
            )
133
134
            out_file = process_and_write_back(data_df, idx)
            edge_files.append(out_file)
135
136
137
138

    return edge_files


139
def gen_node_weights_files(schema_map, params):
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
    """Function to create node weight files for ParMETIS along with the edge files.

    This function generates node-data files, which will be read by the ParMETIS
    executable for partitioning purposes. Each line in these files will be of the
    following format:
        <node_type_id> <node_weight_list> <type_wise_node_id>
    node_type_id -  is id assigned to the node-type to which a given particular
        node belongs to
    weight_list - this is a one-hot vector in which the number in the location of
        the current nodes' node-type will be set to `1` and other will be `0`
    type_node_id - this is the id assigned to the node (in the context of the current
        nodes` node-type). Meaning this id is unique across all the nodes which belong to
        the current nodes` node-type.

    Parameters:
    -----------
    schema_map : json dictionary
        Dictionary created by reading the metadata.json file for the input dataset.
    output : string
        Location of storing the node-weights and edge files for ParMETIS.

    Returns:
    --------
    list :
        List of filenames for nodes of the input graph.
    list :
        List o ffilenames for edges of the input graph.
    """
    rank = get_proc_info()
    ntypes_ntypeid_map, ntypes, ntid_ntype_map = get_node_types(schema_map)
    type_nid_dict, ntype_gnid_offset = get_idranges(
        schema_map[constants.STR_NODE_TYPE],
172
173
174
175
176
177
        dict(
            zip(
                schema_map[constants.STR_NODE_TYPE],
                schema_map[constants.STR_NUM_NODES_PER_TYPE],
            )
        ),
178
179
180
    )

    node_files = []
181
    outdir = Path(params.output_dir)
182
183
184
    os.makedirs(outdir, exist_ok=True)

    for ntype_id, ntype_name in ntid_ntype_map.items():
185
186
187
188
189
190

        # This ntype does not have any train/test/val masks...
        # Each rank will generate equal no. of rows for this node type.
        total_count = schema_map[constants.STR_NUM_NODES_PER_TYPE][ntype_id]
        per_rank_range = np.ones((params.num_parts,), dtype=np.int64) * (
            total_count // params.num_parts
191
        )
192
193
194
195
196
197
198
199
        for i in range(total_count % params.num_parts):
            per_rank_range[i] += 1

        tid_start = np.cumsum([0] + list(per_rank_range[:-1]))
        tid_end = np.cumsum(list(per_rank_range))
        local_tid_start = tid_start[rank]
        local_tid_end = tid_end[rank]
        sz = local_tid_end - local_tid_start
200
201
202

        cols = []
        col_names = []
203
204

        # ntype-id
205
206
207
208
209
        cols.append(
            pyarrow.array(np.ones(sz, dtype=np.int64) * np.int64(ntype_id))
        )
        col_names.append("ntype")

210
        # one-hot vector for ntype-id here.
211
212
213
214
215
216
217
218
219
220
        for i in range(len(ntypes)):
            if i == ntype_id:
                cols.append(pyarrow.array(np.ones(sz, dtype=np.int64)))
            else:
                cols.append(pyarrow.array(np.zeros(sz, dtype=np.int64)))
            col_names.append("w{}".format(i))

        # `type_nid` should be the very last column in the node weights files.
        cols.append(
            pyarrow.array(
221
                np.arange(local_tid_start, local_tid_end, dtype=np.int64)
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
            )
        )
        col_names.append("type_nid")

        out_file = os.path.join(
            outdir, "node_weights_{}_{}.txt".format(ntype_name, rank)
        )
        options = csv.WriteOptions(include_header=False, delimiter=" ")
        options.delimiter = " "

        csv.write_csv(
            pyarrow.Table.from_arrays(cols, names=col_names), out_file, options
        )
        node_files.append(
            (
237
238
                ntype_gnid_offset[ntype_name][0, 0] + local_tid_start,
                ntype_gnid_offset[ntype_name][0, 0] + local_tid_end,
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
                out_file,
            )
        )

    return node_files


def gen_parmetis_input_args(params, schema_map):
    """Function to create two input arguments which will be passed to the parmetis.
    first argument is a text file which has a list of node-weights files,
    namely parmetis-nfiles.txt, and second argument is a text file which has a
    list of edge files, namely parmetis_efiles.txt.
    ParMETIS uses these two files to read/load the graph and partition the graph
    With regards to the file format, parmetis_nfiles.txt uses the following format
    for each line in that file:
        <filename> <global_node_id_start> <global_node_id_end>(exclusive)
    While parmetis_efiles.txt just has <filename> in each line.

    Parameters:
    -----------
    params : argparser instance
        Instance of ArgParser class, which has all the input arguments passed to
        run this program.
    schema_map : json dictionary
        Dictionary object created after reading the graph metadata.json file.
    """

266
    # TODO: This makes the assumption that all node files have the same number of chunks
267
268
269
    ntypes_ntypeid_map, ntypes, ntid_ntype_map = get_node_types(schema_map)
    type_nid_dict, ntype_gnid_offset = get_idranges(
        schema_map[constants.STR_NODE_TYPE],
270
271
272
273
274
275
        dict(
            zip(
                schema_map[constants.STR_NODE_TYPE],
                schema_map[constants.STR_NUM_NODES_PER_TYPE],
            )
        ),
276
277
    )

278
    # Check if <graph-name>_stats.txt exists, if not create one using metadata.
279
    # Here stats file will be created in the current directory.
280
281
282
283
    # No. of constraints, third column in the stats file is computed as follows:
    #   num_constraints = no. of node types + train_mask + test_mask + val_mask
    #   Here, (train/test/val) masks will be set to 1 if these masks exist for
    #   all the node types in the graph, otherwise these flags will be set to 0
284
285
286
    assert (
        constants.STR_GRAPH_NAME in schema_map
    ), "Graph name is not present in the json file"
287
    graph_name = schema_map[constants.STR_GRAPH_NAME]
288
289
290
    if not os.path.isfile(
        os.path.join(params.input_dir, f"{graph_name}_stats.txt")
    ):
291
292
        num_nodes = np.sum(schema_map[constants.STR_NUM_NODES_PER_TYPE])
        num_edges = np.sum(schema_map[constants.STR_NUM_EDGES_PER_TYPE])
293
294
        num_ntypes = len(schema_map[constants.STR_NODE_TYPE])

295
        num_constraints = num_ntypes
296

297
298
299
        with open(
            os.path.join(params.input_dir, f"{graph_name}_stats.txt"), "w"
        ) as sf:
300
            sf.write(f"{num_nodes} {num_edges} {num_constraints}")
301

302
303
304
305
306
    node_files = []
    outdir = Path(params.output_dir)
    os.makedirs(outdir, exist_ok=True)
    for ntype_id, ntype_name in ntid_ntype_map.items():
        global_nid_offset = ntype_gnid_offset[ntype_name][0, 0]
307
308
309
310
311
312
313
314
315
316
317
318
319
320
        total_count = schema_map[constants.STR_NUM_NODES_PER_TYPE][ntype_id]
        per_rank_range = np.ones((params.num_parts,), dtype=np.int64) * (
            total_count // params.num_parts
        )
        for i in range(total_count % params.num_parts):
            per_rank_range[i] += 1
        tid_start = np.cumsum([0] + list(per_rank_range[:-1]))
        tid_end = np.cumsum(per_rank_range)
        logging.info(f" tid-start = {tid_start}, tid-end = {tid_end}")
        logging.info(f" per_rank_range - {per_rank_range}")

        for rank in range(params.num_parts):
            local_tid_start = tid_start[rank]
            local_tid_end = tid_end[rank]
321
            out_file = os.path.join(
322
                outdir, "node_weights_{}_{}.txt".format(ntype_name, rank)
323
324
325
326
            )
            node_files.append(
                (
                    out_file,
327
328
                    global_nid_offset + local_tid_start,
                    global_nid_offset + local_tid_end,
329
330
331
332
333
334
335
336
337
338
339
340
341
                )
            )

    nfile = open(os.path.join(params.output_dir, "parmetis_nfiles.txt"), "w")
    for f in node_files:
        # format: filename global_node_id_start global_node_id_end(exclusive)
        nfile.write("{} {} {}\n".format(f[0], f[1], f[2]))
    nfile.close()

    # Regenerate edge files here.
    edge_data = schema_map[constants.STR_EDGES]
    edge_files = []
    for etype_name, etype_info in edge_data.items():
342
343
344
        edge_data_files = etype_info[constants.STR_DATA]
        for edge_file_path in edge_data_files:
            out_file = os.path.basename(edge_file_path)
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
            out_file = os.path.join(outdir, "edges_{}".format(out_file))
            edge_files.append(out_file)

    with open(
        os.path.join(params.output_dir, "parmetis_efiles.txt"), "w"
    ) as efile:
        for f in edge_files:
            efile.write("{}\n".format(f))


def run_preprocess_data(params):
    """Main function which will help create graph files for ParMETIS processing

    Parameters:
    -----------
    params : argparser object
        An instance of argparser class which stores command line arguments.
    """
    logging.info(f"Starting to generate ParMETIS files...")
    rank = get_proc_info()
365
366
367
368
369
370

    assert os.path.isdir(
        params.input_dir
    ), f"Please check `input_dir` argument."

    schema_map = read_json(os.path.join(params.input_dir, params.schema_file))
371
    gen_node_weights_files(schema_map, params)
372
373
    logging.info(f"Done with node weights....")

374
    gen_edge_files(rank, schema_map, params)
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
    logging.info(f"Done with edge weights...")

    if rank == 0:
        gen_parmetis_input_args(params, schema_map)
    logging.info(f"Done generating files for ParMETIS run ..")


if __name__ == "__main__":
    """Main function used to generate temporary files needed for ParMETIS execution.
    This function generates node-weight files and edges files which are consumed by ParMETIS.

    Example usage:
    --------------
    mpirun -np 4 python3 parmetis_preprocess.py --schema <file> --output <target-output-dir>
    """
    parser = argparse.ArgumentParser(
        description="Generate ParMETIS files for input dataset"
    )
    parser.add_argument(
        "--schema_file",
        required=True,
        type=str,
        help="The schema of the input graph",
    )
399
400
    parser.add_argument(
        "--input_dir",
401
        required=True,
402
        type=str,
403
        help="This directory will be used as the relative directory to locate files, if absolute paths are not used",
404
    )
405
406
407
408
409
410
    parser.add_argument(
        "--output_dir",
        required=True,
        type=str,
        help="The output directory for the node weights files and auxiliary files for ParMETIS.",
    )
411
412
413
414
415
416
    parser.add_argument(
        "--num_parts",
        required=True,
        type=int,
        help="Total no. of output graph partitions.",
    )
417
418
    params = parser.parse_args()

419
420
421
422
423
424
425
    # Configure logging.
    logging.basicConfig(
        level="INFO",
        format=f"[{platform.node()} \
        %(levelname)s %(asctime)s PID:%(process)d] %(message)s",
    )

426
427
    # Invoke the function to generate files for parmetis
    run_preprocess_data(params)