parmetis_preprocess.py 16.8 KB
Newer Older
1
2
3
4
5
6
import argparse
import logging
import os
import sys
from pathlib import Path

7
8
import constants

9
10
11
import numpy as np
import pyarrow
import pyarrow.csv as csv
12
import pyarrow.parquet as pq
13
14
15
import torch
import torch.distributed as dist
from utils import get_idranges, get_node_types, read_json
16
import array_readwriter
17
18
19
20
21
22
23


def get_proc_info():
    """Helper function to get the rank from the
    environment when `mpirun` is used to run this python program.

    Please note that for mpi(openmpi) installation the rank is retrieved from the
24
25
    environment using OMPI_COMM_WORLD_RANK. For mpich it is
    retrieved from the environment using PMI_RANK.
26

27
28
29
30
31
32
    Returns:
    --------
    integer :
        Rank of the current process.
    """
    env_variables = dict(os.environ)
33
34
35
    # mpich
    if "PMI_RANK" in env_variables:
        return int(env_variables["PMI_RANK"])
36
    # openmpi
37
38
39
40
    elif "OMPI_COMM_WORLD_RANK" in env_variables:
        return int(env_variables["OMPI_COMM_WORLD_RANK"])
    else:
        return 0
41

42

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
def gen_edge_files(schema_map, output):
    """Function to create edges files to be consumed by ParMETIS
    for partitioning purposes.

    This function creates the edge files and each of these will have the
    following format (meaning each line of these file is of the following format)
    <global_src_id> <global_dst_id>

    Here ``global`` prefix means that globally unique identifier assigned each node
    in the input graph. In this context globally unique means unique across all the
    nodes in the input graph.

    Parameters:
    -----------
    schema_map : json dictionary
        Dictionary created by reading the metadata.json file for the input dataset.
    output : string
        Location of storing the node-weights and edge files for ParMETIS.
    """
    rank = get_proc_info()
    type_nid_dict, ntype_gnid_offset = get_idranges(
        schema_map[constants.STR_NODE_TYPE],
        schema_map[constants.STR_NUM_NODES_PER_CHUNK],
    )

    # Regenerate edge files here.
    edge_data = schema_map[constants.STR_EDGES]
    etype_names = schema_map[constants.STR_EDGE_TYPE]
    etype_name_idmap = {e: idx for idx, e in enumerate(etype_names)}
    edge_tids, _ = get_idranges(
        schema_map[constants.STR_EDGE_TYPE],
        schema_map[constants.STR_NUM_EDGES_PER_CHUNK],
    )

    outdir = Path(output)
    os.makedirs(outdir, exist_ok=True)
    edge_files = []
    num_parts = len(schema_map[constants.STR_NUM_EDGES_PER_CHUNK][0])
    for etype_name, etype_info in edge_data.items():

83
84
        edges_format = etype_info[constants.STR_FORMAT][constants.STR_NAME]
        edge_data_files = etype_info[constants.STR_DATA]
85
86
87
88
89
90
91
92
93

        # ``edgetype`` strings are in canonical format, src_node_type:edge_type:dst_node_type
        tokens = etype_name.split(":")
        assert len(tokens) == 3

        src_ntype_name = tokens[0]
        rel_name = tokens[1]
        dst_ntype_name = tokens[2]

94
95
96
        def convert_to_numpy_and_write_back(data_df):
            data_f0 = data_df["f0"].to_numpy()
            data_f1 = data_df["f1"].to_numpy()
97

98
99
100
101
            global_src_id = data_f0 + ntype_gnid_offset[src_ntype_name][0, 0]
            global_dst_id = data_f1 + ntype_gnid_offset[dst_ntype_name][0, 0]
            cols = [global_src_id, global_dst_id]
            col_names = ["global_src_id", "global_dst_id"]
102

103
104
            out_file = edge_data_files[rank].split("/")[-1]
            out_file = os.path.join(outdir, "edges_{}".format(out_file))
105

106
107
108
109
            # TODO(thvasilo): We should support writing to the same format as the input
            options = csv.WriteOptions(include_header=False, delimiter=" ")
            options.delimiter = " "
            csv.write_csv(
110
111
112
                pyarrow.Table.from_arrays(cols, names=col_names),
                out_file,
                options,
113
114
115
116
            )
            return out_file

        if edges_format == constants.STR_CSV:
117
118
119
            delimiter = etype_info[constants.STR_FORMAT][
                constants.STR_FORMAT_DELIMITER
            ]
120
121
122
123
124
125
126
127
128
129
130
131
132
133
            data_df = csv.read_csv(
                edge_data_files[rank],
                read_options=pyarrow.csv.ReadOptions(
                    autogenerate_column_names=True
                ),
                parse_options=pyarrow.csv.ParseOptions(delimiter=delimiter),
            )
        elif edges_format == constants.STR_PARQUET:
            data_df = pq.read_table(edge_data_files[rank])
            data_df = data_df.rename_columns(["f0", "f1"])
        else:
            raise NotImplementedError(f"Unknown edge format {edges_format}")

        out_file = convert_to_numpy_and_write_back(data_df)
134
135
136
137
138
        edge_files.append(out_file)

    return edge_files


139
def read_node_features(schema_map, tgt_ntype_name, feat_names, input_dir):
140
141
142
143
144
145
146
147
148
149
150
    """Helper function to read the node features.
    Only node features which are requested are read from the input dataset.

    Parameters:
    -----------
    schema_map : json dictionary
        Dictionary created by reading the metadata.json file for the input dataset.
    tgt_ntype_name : string
        node-type name, for which node features will be read from the input dataset.
    feat_names : set
        A set of strings, feature names, which will be read for a given node type.
151
152
    input_dir : str
        The input directory where the dataset is located.
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

    Returns:
    --------
    dictionary :
        A dictionary where key is the feature-name and value is the numpy array.
    """
    rank = get_proc_info()
    node_features = {}
    if constants.STR_NODE_DATA in schema_map:
        dataset_features = schema_map[constants.STR_NODE_DATA]
        if dataset_features and (len(dataset_features) > 0):
            for ntype_name, ntype_feature_data in dataset_features.items():
                if ntype_name != tgt_ntype_name:
                    continue
                # ntype_feature_data is a dictionary
                # where key: feature_name, value: dictionary in which keys are "format", "data".
                for feat_name, feat_data in ntype_feature_data.items():
                    if feat_name in feat_names:
                        feat_data_fname = feat_data[constants.STR_DATA][rank]
172
173
                        if not os.path.isabs(feat_data_fname):
                            feat_data_fname = os.path.join(input_dir, feat_data_fname)
174
                        logging.info(f"Reading: {feat_data_fname}")
175
176
177
178
179
180
                        file_suffix = Path(feat_data_fname).suffix
                        reader_fmt_meta = {
                            "name": file_suffix[1:]
                        }
                        node_features[feat_name] = array_readwriter.get_array_parser(
                            **reader_fmt_meta).read(feat_data_fname)
181
182
183
    return node_features


184
def gen_node_weights_files(schema_map, input_dir, output):
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
    """Function to create node weight files for ParMETIS along with the edge files.

    This function generates node-data files, which will be read by the ParMETIS
    executable for partitioning purposes. Each line in these files will be of the
    following format:
        <node_type_id> <node_weight_list> <type_wise_node_id>
    node_type_id -  is id assigned to the node-type to which a given particular
        node belongs to
    weight_list - this is a one-hot vector in which the number in the location of
        the current nodes' node-type will be set to `1` and other will be `0`
    type_node_id - this is the id assigned to the node (in the context of the current
        nodes` node-type). Meaning this id is unique across all the nodes which belong to
        the current nodes` node-type.

    Parameters:
    -----------
    schema_map : json dictionary
        Dictionary created by reading the metadata.json file for the input dataset.
203
204
    input_dir : str
        The input directory where the dataset is located.
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
    output : string
        Location of storing the node-weights and edge files for ParMETIS.

    Returns:
    --------
    list :
        List of filenames for nodes of the input graph.
    list :
        List o ffilenames for edges of the input graph.
    """
    rank = get_proc_info()
    ntypes_ntypeid_map, ntypes, ntid_ntype_map = get_node_types(schema_map)
    type_nid_dict, ntype_gnid_offset = get_idranges(
        schema_map[constants.STR_NODE_TYPE],
        schema_map[constants.STR_NUM_NODES_PER_CHUNK],
    )

    node_files = []
    outdir = Path(output)
    os.makedirs(outdir, exist_ok=True)

    for ntype_id, ntype_name in ntid_ntype_map.items():
        type_start, type_end = (
            type_nid_dict[ntype_name][rank][0],
            type_nid_dict[ntype_name][rank][1],
        )
        count = type_end - type_start
        sz = (count,)

        cols = []
        col_names = []
        cols.append(
            pyarrow.array(np.ones(sz, dtype=np.int64) * np.int64(ntype_id))
        )
        col_names.append("ntype")

        for i in range(len(ntypes)):
            if i == ntype_id:
                cols.append(pyarrow.array(np.ones(sz, dtype=np.int64)))
            else:
                cols.append(pyarrow.array(np.zeros(sz, dtype=np.int64)))
            col_names.append("w{}".format(i))

        # Add train/test/validation masks if present. node-degree will be added when this file
        # is read by ParMETIS to mimic the exisiting single process pipeline present in dgl.
        node_feats = read_node_features(
251
252
            schema_map, ntype_name, set(["train_mask", "val_mask", "test_mask"]),
            input_dir
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
        )
        for k, v in node_feats.items():
            assert sz == v.shape
            cols.append(pyarrow.array(v))
            col_names.append(k)

        # `type_nid` should be the very last column in the node weights files.
        cols.append(
            pyarrow.array(
                np.arange(count, dtype=np.int64) + np.int64(type_start)
            )
        )
        col_names.append("type_nid")

        out_file = os.path.join(
            outdir, "node_weights_{}_{}.txt".format(ntype_name, rank)
        )
        options = csv.WriteOptions(include_header=False, delimiter=" ")
        options.delimiter = " "

        csv.write_csv(
            pyarrow.Table.from_arrays(cols, names=col_names), out_file, options
        )
        node_files.append(
            (
                ntype_gnid_offset[ntype_name][0, 0] + type_start,
                ntype_gnid_offset[ntype_name][0, 0] + type_end,
                out_file,
            )
        )

    return node_files


def gen_parmetis_input_args(params, schema_map):
    """Function to create two input arguments which will be passed to the parmetis.
    first argument is a text file which has a list of node-weights files,
    namely parmetis-nfiles.txt, and second argument is a text file which has a
    list of edge files, namely parmetis_efiles.txt.
    ParMETIS uses these two files to read/load the graph and partition the graph
    With regards to the file format, parmetis_nfiles.txt uses the following format
    for each line in that file:
        <filename> <global_node_id_start> <global_node_id_end>(exclusive)
    While parmetis_efiles.txt just has <filename> in each line.

    Parameters:
    -----------
    params : argparser instance
        Instance of ArgParser class, which has all the input arguments passed to
        run this program.
    schema_map : json dictionary
        Dictionary object created after reading the graph metadata.json file.
    """

    num_nodes_per_chunk = schema_map[constants.STR_NUM_NODES_PER_CHUNK]
308
309
    # TODO: This makes the assumption that all node files have the same number of chunks
    num_node_parts = len(num_nodes_per_chunk[0])
310
311
312
313
314
315
    ntypes_ntypeid_map, ntypes, ntid_ntype_map = get_node_types(schema_map)
    type_nid_dict, ntype_gnid_offset = get_idranges(
        schema_map[constants.STR_NODE_TYPE],
        schema_map[constants.STR_NUM_NODES_PER_CHUNK],
    )

316
    # Check if <graph-name>_stats.txt exists, if not create one using metadata.
317
    # Here stats file will be created in the current directory.
318
319
320
321
    # No. of constraints, third column in the stats file is computed as follows:
    #   num_constraints = no. of node types + train_mask + test_mask + val_mask
    #   Here, (train/test/val) masks will be set to 1 if these masks exist for
    #   all the node types in the graph, otherwise these flags will be set to 0
322
323
324
    assert (
        constants.STR_GRAPH_NAME in schema_map
    ), "Graph name is not present in the json file"
325
    graph_name = schema_map[constants.STR_GRAPH_NAME]
326
327
328
329
330
331
332
    if not os.path.isfile(f"{graph_name}_stats.txt"):
        num_nodes = np.sum(
            np.concatenate(schema_map[constants.STR_NUM_NODES_PER_CHUNK])
        )
        num_edges = np.sum(
            np.concatenate(schema_map[constants.STR_NUM_EDGES_PER_CHUNK])
        )
333
334
335
336
337
338
339
340
341
342
343
344
345
346
        num_ntypes = len(schema_map[constants.STR_NODE_TYPE])

        train_mask = test_mask = val_mask = 0
        node_feats = schema_map[constants.STR_NODE_DATA]
        for ntype, ntype_data in node_feats.items():
            if "train_mask" in ntype_data:
                train_mask += 1
            if "test_mask" in ntype_data:
                test_mask += 1
            if "val_mask" in ntype_data:
                val_mask += 1
        train_mask = train_mask // num_ntypes
        test_mask = test_mask // num_ntypes
        val_mask = val_mask // num_ntypes
347
        num_constraints = num_ntypes + train_mask + test_mask + val_mask
348

349
350
        with open(f"{graph_name}_stats.txt", "w") as sf:
            sf.write(f"{num_nodes} {num_edges} {num_constraints}")
351

352
353
354
355
356
    node_files = []
    outdir = Path(params.output_dir)
    os.makedirs(outdir, exist_ok=True)
    for ntype_id, ntype_name in ntid_ntype_map.items():
        global_nid_offset = ntype_gnid_offset[ntype_name][0, 0]
357
        for r in range(num_node_parts):
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
            type_start, type_end = (
                type_nid_dict[ntype_name][r][0],
                type_nid_dict[ntype_name][r][1],
            )
            out_file = os.path.join(
                outdir, "node_weights_{}_{}.txt".format(ntype_name, r)
            )
            node_files.append(
                (
                    out_file,
                    global_nid_offset + type_start,
                    global_nid_offset + type_end,
                )
            )

    nfile = open(os.path.join(params.output_dir, "parmetis_nfiles.txt"), "w")
    for f in node_files:
        # format: filename global_node_id_start global_node_id_end(exclusive)
        nfile.write("{} {} {}\n".format(f[0], f[1], f[2]))
    nfile.close()

    # Regenerate edge files here.
    edge_data = schema_map[constants.STR_EDGES]
    edge_files = []
    for etype_name, etype_info in edge_data.items():
383
384
385
        edge_data_files = etype_info[constants.STR_DATA]
        for edge_file_path in edge_data_files:
            out_file = os.path.basename(edge_file_path)
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
            out_file = os.path.join(outdir, "edges_{}".format(out_file))
            edge_files.append(out_file)

    with open(
        os.path.join(params.output_dir, "parmetis_efiles.txt"), "w"
    ) as efile:
        for f in edge_files:
            efile.write("{}\n".format(f))


def run_preprocess_data(params):
    """Main function which will help create graph files for ParMETIS processing

    Parameters:
    -----------
    params : argparser object
        An instance of argparser class which stores command line arguments.
    """
    logging.info(f"Starting to generate ParMETIS files...")

    rank = get_proc_info()
    schema_map = read_json(params.schema_file)
    num_nodes_per_chunk = schema_map[constants.STR_NUM_NODES_PER_CHUNK]
    num_parts = len(num_nodes_per_chunk[0])
410
    gen_node_weights_files(schema_map, params.input_dir, params.output_dir)
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
    logging.info(f"Done with node weights....")

    gen_edge_files(schema_map, params.output_dir)
    logging.info(f"Done with edge weights...")

    if rank == 0:
        gen_parmetis_input_args(params, schema_map)
    logging.info(f"Done generating files for ParMETIS run ..")


if __name__ == "__main__":
    """Main function used to generate temporary files needed for ParMETIS execution.
    This function generates node-weight files and edges files which are consumed by ParMETIS.

    Example usage:
    --------------
    mpirun -np 4 python3 parmetis_preprocess.py --schema <file> --output <target-output-dir>
    """
    parser = argparse.ArgumentParser(
        description="Generate ParMETIS files for input dataset"
    )
    parser.add_argument(
        "--schema_file",
        required=True,
        type=str,
        help="The schema of the input graph",
    )
438
439
440
441
442
    parser.add_argument(
        "--input_dir",
        type=str,
        help="The input directory where the dataset is located",
    )
443
444
445
446
447
448
449
450
451
452
    parser.add_argument(
        "--output_dir",
        required=True,
        type=str,
        help="The output directory for the node weights files and auxiliary files for ParMETIS.",
    )
    params = parser.parse_args()

    # Invoke the function to generate files for parmetis
    run_preprocess_data(params)