entity_classify_mb.py 7.66 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
"""Modeling Relational Data with Graph Convolutional Networks
Paper: https://arxiv.org/abs/1703.06103
Reference Code: https://github.com/tkipf/relational-gcn
"""
import argparse
import itertools
import numpy as np
import time
import torch as th
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from functools import partial

import dgl
from dgl.data.rdf import AIFB, MUTAG, BGS, AM
17
from model import EntityClassify, RelGraphEmbed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

class HeteroNeighborSampler:
    """Neighbor sampler on heterogeneous graphs

    Parameters
    ----------
    g : DGLHeteroGraph
        Full graph
    category : str
        Category name of the seed nodes.
    fanouts : list of int
        Fanout of each hop starting from the seed nodes. If a fanout is None,
        sample full neighbors.
    """
    def __init__(self, g, category, fanouts):
        self.g = g
        self.category = category
        self.fanouts = fanouts

    def sample_blocks(self, seeds):
        blocks = []
        seeds = {self.category : th.tensor(seeds).long()}
        cur = seeds
        for fanout in self.fanouts:
            if fanout is None:
                frontier = dgl.in_subgraph(self.g, cur)
            else:
                frontier = dgl.sampling.sample_neighbors(self.g, cur, fanout)
            block = dgl.to_block(frontier, cur)
            cur = {}
            for ntype in block.srctypes:
                cur[ntype] = block.srcnodes[ntype].data[dgl.NID]
            blocks.insert(0, block)
        return seeds, blocks

def extract_embed(node_embed, block):
    emb = {}
    for ntype in block.srctypes:
        nid = block.srcnodes[ntype].data[dgl.NID]
        emb[ntype] = node_embed[ntype][nid]
    return emb


def evaluate(model, seeds, blocks, node_embed, labels, category, use_cuda):
    model.eval()
    emb = extract_embed(node_embed, blocks[0])
    lbl = labels[seeds]
    if use_cuda:
        emb = {k : e.cuda() for k, e in emb.items()}
        lbl = lbl.cuda()
    logits = model(emb, blocks)[category]
    loss = F.cross_entropy(logits, lbl)
    acc = th.sum(logits.argmax(dim=1) == lbl).item() / len(seeds)
    return loss, acc

def main(args):
    # load graph data
    if args.dataset == 'aifb':
        dataset = AIFB()
    elif args.dataset == 'mutag':
        dataset = MUTAG()
    elif args.dataset == 'bgs':
        dataset = BGS()
    elif args.dataset == 'am':
        dataset = AM()
    else:
        raise ValueError()

    g = dataset.graph
    category = dataset.predict_category
    num_classes = dataset.num_classes
    train_idx = dataset.train_idx
    test_idx = dataset.test_idx
    labels = dataset.labels

    # split dataset into train, validate, test
    if args.validation:
        val_idx = train_idx[:len(train_idx) // 5]
        train_idx = train_idx[len(train_idx) // 5:]
    else:
        val_idx = train_idx

    # check cuda
    use_cuda = args.gpu >= 0 and th.cuda.is_available()
    if use_cuda:
        th.cuda.set_device(args.gpu)

    train_label = labels[train_idx]
    val_label = labels[val_idx]
    test_label = labels[test_idx]

    # create embeddings
    embed_layer = RelGraphEmbed(g, args.n_hidden)
    node_embed = embed_layer()
    # create model
    model = EntityClassify(g,
                           args.n_hidden,
                           num_classes,
                           num_bases=args.n_bases,
                           num_hidden_layers=args.n_layers - 2,
                           dropout=args.dropout,
                           use_self_loop=args.use_self_loop)

    if use_cuda:
        model.cuda()

    # train sampler
    sampler = HeteroNeighborSampler(g, category, [args.fanout] * args.n_layers)
    loader = DataLoader(dataset=train_idx.numpy(),
                        batch_size=args.batch_size,
                        collate_fn=sampler.sample_blocks,
                        shuffle=True,
                        num_workers=0)

    # validation sampler
    val_sampler = HeteroNeighborSampler(g, category, [None] * args.n_layers)
    _, val_blocks = val_sampler.sample_blocks(val_idx)

    # test sampler
    test_sampler = HeteroNeighborSampler(g, category, [None] * args.n_layers)
    _, test_blocks = test_sampler.sample_blocks(test_idx)

    # optimizer
    all_params = itertools.chain(model.parameters(), embed_layer.parameters())
    optimizer = th.optim.Adam(all_params, lr=args.lr, weight_decay=args.l2norm)

    # training loop
    print("start training...")
    dur = []
    for epoch in range(args.n_epochs):
        model.train()
        optimizer.zero_grad()
        if epoch > 3:
            t0 = time.time()

        for i, (seeds, blocks) in enumerate(loader):
            batch_tic = time.time()
            emb = extract_embed(node_embed, blocks[0])
            lbl = labels[seeds[category]]
            if use_cuda:
                emb = {k : e.cuda() for k, e in emb.items()}
                lbl = lbl.cuda()
            logits = model(emb, blocks)[category]
            loss = F.cross_entropy(logits, lbl)
            loss.backward()
            optimizer.step()

            train_acc = th.sum(logits.argmax(dim=1) == lbl).item() / len(seeds[category])
            print("Epoch {:05d} | Batch {:03d} | Train Acc: {:.4f} | Train Loss: {:.4f} | Time: {:.4f}".
                  format(epoch, i, train_acc, loss.item(), time.time() - batch_tic))

        if epoch > 3:
            dur.append(time.time() - t0)

        val_loss, val_acc = evaluate(model, val_idx, val_blocks, node_embed, labels, category, use_cuda)
        print("Epoch {:05d} | Valid Acc: {:.4f} | Valid loss: {:.4f} | Time: {:.4f}".
              format(epoch, val_acc, val_loss.item(), np.average(dur)))
    print()
    if args.model_path is not None:
        th.save(model.state_dict(), args.model_path)

    test_loss, test_acc = evaluate(model, test_idx, test_blocks, node_embed, labels, category, use_cuda)
    print("Test Acc: {:.4f} | Test loss: {:.4f}".format(test_acc, test_loss.item()))
    print()

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='RGCN')
    parser.add_argument("--dropout", type=float, default=0,
            help="dropout probability")
    parser.add_argument("--n-hidden", type=int, default=16,
            help="number of hidden units")
    parser.add_argument("--gpu", type=int, default=-1,
            help="gpu")
    parser.add_argument("--lr", type=float, default=1e-2,
            help="learning rate")
    parser.add_argument("--n-bases", type=int, default=-1,
            help="number of filter weight matrices, default: -1 [use all]")
    parser.add_argument("--n-layers", type=int, default=2,
            help="number of propagation rounds")
    parser.add_argument("-e", "--n-epochs", type=int, default=20,
            help="number of training epochs")
    parser.add_argument("-d", "--dataset", type=str, required=True,
            help="dataset to use")
    parser.add_argument("--model_path", type=str, default=None,
            help='path for save the model')
    parser.add_argument("--l2norm", type=float, default=0,
            help="l2 norm coef")
    parser.add_argument("--use-self-loop", default=False, action='store_true',
            help="include self feature as a special relation")
    parser.add_argument("--batch-size", type=int, default=100,
            help="Mini-batch size. If -1, use full graph training.")
    parser.add_argument("--fanout", type=int, default=4,
            help="Fan-out of neighbor sampling.")
    fp = parser.add_mutually_exclusive_group(required=False)
    fp.add_argument('--validation', dest='validation', action='store_true')
    fp.add_argument('--testing', dest='validation', action='store_false')
    parser.set_defaults(validation=True)

    args = parser.parse_args()
    print(args)
    main(args)