node_classification.py 13.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
"""
This script trains and tests a GraphSAGE model for node classification on
multiple GPUs using distributed data-parallel training (DDP) and GraphBolt
data loader. 

Before reading this example, please familiar yourself with graphsage node
classification using GtaphBolt data loader by reading the example in the
`examples/sampling/graphbolt/node_classification.py`.

For the usage of DDP provided by PyTorch, please read its documentation:
https://pytorch.org/tutorials/beginner/dist_overview.html and
https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParal
lel.html

This flowchart describes the main functional sequence of the provided example:
main

├───> OnDiskDataset pre-processing

└───> run (multiprocessing) 

      ├───> Init process group and build distributed SAGE model (HIGHLIGHT)

      ├───> train
      │     │
      │     ├───> Get GraphBolt dataloader with DistributedItemSampler
      │     │     (HIGHLIGHT)
      │     │
      │     └───> Training loop
      │           │
      │           ├───> SAGE.forward
      │           │
      │           ├───> Validation set evaluation
      │           │
      │           └───> Collect accuracy and loss from all ranks (HIGHLIGHT)

      └───> Test set evaluation
"""
import argparse
import os
41
import time
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

import dgl.graphbolt as gb
import dgl.nn as dglnn
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn as nn
import torch.nn.functional as F
import torchmetrics.functional as MF
import tqdm
from torch.distributed.algorithms.join import Join
from torch.nn.parallel import DistributedDataParallel as DDP


class SAGE(nn.Module):
    def __init__(self, in_size, hidden_size, out_size):
        super().__init__()
        self.layers = nn.ModuleList()
        # Three-layer GraphSAGE-mean.
        self.layers.append(dglnn.SAGEConv(in_size, hidden_size, "mean"))
        self.layers.append(dglnn.SAGEConv(hidden_size, hidden_size, "mean"))
        self.layers.append(dglnn.SAGEConv(hidden_size, out_size, "mean"))
        self.dropout = nn.Dropout(0.5)
        self.hidden_size = hidden_size
        self.out_size = out_size
        # Set the dtype for the layers manually.
        self.set_layer_dtype(torch.float32)

    def set_layer_dtype(self, dtype):
        for layer in self.layers:
            for param in layer.parameters():
                param.data = param.data.to(dtype)

    def forward(self, blocks, x):
        hidden_x = x
        for layer_idx, (layer, block) in enumerate(zip(self.layers, blocks)):
            hidden_x = layer(block, hidden_x)
            is_last_layer = layer_idx == len(self.layers) - 1
            if not is_last_layer:
                hidden_x = F.relu(hidden_x)
                hidden_x = self.dropout(hidden_x)
        return hidden_x


def create_dataloader(
    args,
    graph,
    features,
    itemset,
    device,
92
    is_train,
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
):
    ############################################################################
    # [HIGHLIGHT]
    # Get a GraphBolt dataloader for node classification tasks with multi-gpu
    # distributed training. DistributedItemSampler instead of ItemSampler should
    # be used.
    ############################################################################

    ############################################################################
    # [Note]:
    # gb.DistributedItemSampler()
    # [Input]:
    # 'item_set': The current dataset. (e.g. `train_set` or `valid_set`)
    # 'batch_size': Specifies the number of samples to be processed together,
    # referred to as a 'mini-batch'. (The term 'mini-batch' is used here to
    # indicate a subset of the entire dataset that is processed together. This
    # is in contrast to processing the entire dataset, known as a 'full batch'.)
    # 'drop_last': Determines whether the last non-full minibatch should be
    # dropped.
    # 'shuffle': Determines if the items should be shuffled.
    # 'num_replicas': Specifies the number of replicas.
    # 'drop_uneven_inputs': Determines whether the numbers of minibatches on all
    # ranks should be kept the same by dropping uneven minibatches.
    # [Output]:
    # An DistributedItemSampler object for handling mini-batch sampling on
    # multiple replicas.
    ############################################################################
    datapipe = gb.DistributedItemSampler(
        item_set=itemset,
        batch_size=args.batch_size,
123
124
125
        drop_last=is_train,
        shuffle=is_train,
        drop_uneven_inputs=is_train,
126
127
128
129
130
131
132
133
134
    )
    ############################################################################
    # [Note]:
    # datapipe.copy_to() / gb.CopyTo()
    # [Input]:
    # 'device': The specified device that data should be copied to.
    # [Output]:
    # A CopyTo object copying data in the datapipe to a specified device.\
    ############################################################################
135
    if args.storage_device != "cpu":
136
137
138
        datapipe = datapipe.copy_to(device, extra_attrs=["seed_nodes"])
    datapipe = datapipe.sample_neighbor(graph, args.fanout)
    datapipe = datapipe.fetch_feature(features, node_feature_keys=["feat"])
139
    if args.storage_device == "cpu":
140
141
        datapipe = datapipe.copy_to(device)

142
    dataloader = gb.DataLoader(datapipe, args.num_workers)
143
144
145
146
147
148

    # Return the fully-initialized DataLoader object.
    return dataloader


@torch.no_grad()
149
def evaluate(rank, model, dataloader, num_classes, device):
150
151
152
153
    model.eval()
    y = []
    y_hats = []

154
    for data in tqdm.tqdm(dataloader) if rank == 0 else dataloader:
155
        blocks = data.blocks
156
        x = data.node_features["feat"]
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
        y.append(data.labels)
        y_hats.append(model.module(blocks, x))

    res = MF.accuracy(
        torch.cat(y_hats),
        torch.cat(y),
        task="multiclass",
        num_classes=num_classes,
    )

    return res.to(device)


def train(
    world_size,
    rank,
    args,
174
175
    train_dataloader,
    valid_dataloader,
176
177
178
179
180
181
182
    num_classes,
    model,
    device,
):
    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)

    for epoch in range(args.epochs):
183
184
        epoch_start = time.time()

185
        model.train()
186
        total_loss = torch.tensor(0, dtype=torch.float, device=device)
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
        ########################################################################
        # (HIGHLIGHT) Use Join Context Manager to solve uneven input problem.
        #
        # The mechanics of Distributed Data Parallel (DDP) training in PyTorch
        # requires the number of inputs are the same for all ranks, otherwise
        # the program may error or hang. To solve it, PyTorch provides Join
        # Context Manager. Please refer to
        # https://pytorch.org/tutorials/advanced/generic_join.html for detailed
        # information.
        #
        # Another method is to set `drop_uneven_inputs` as True in GraphBolt's
        # DistributedItemSampler, which will solve this problem by dropping
        # uneven inputs.
        ########################################################################
        with Join([model]):
            for step, data in (
203
                tqdm.tqdm(enumerate(train_dataloader))
204
                if rank == 0
205
                else enumerate(train_dataloader)
206
207
208
            ):
                # The input features are from the source nodes in the first
                # layer's computation graph.
209
                x = data.node_features["feat"]
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

                # The ground truth labels are from the destination nodes
                # in the last layer's computation graph.
                y = data.labels

                blocks = data.blocks

                y_hat = model(blocks, x)

                # Compute loss.
                loss = F.cross_entropy(y_hat, y)

                optimizer.zero_grad()
                loss.backward()
                optimizer.step()

226
                total_loss += loss.detach()
227
228
229
230

        # Evaluate the model.
        if rank == 0:
            print("Validating...")
231
232
233
234
235
236
        acc = evaluate(
            rank,
            model,
            valid_dataloader,
            num_classes,
            device,
237
238
239
240
241
242
243
244
245
246
247
        )
        ########################################################################
        # (HIGHLIGHT) Collect accuracy and loss values from sub-processes and
        # obtain overall average values.
        #
        # `torch.distributed.reduce` is used to reduce tensors from all the
        # sub-processes to a specified process, ReduceOp.SUM is used by default.
        ########################################################################
        dist.reduce(tensor=acc, dst=0)
        total_loss /= step + 1
        dist.reduce(tensor=total_loss, dst=0)
248
249

        epoch_end = time.time()
250
251
252
253
        if rank == 0:
            print(
                f"Epoch {epoch:05d} | "
                f"Average Loss {total_loss.item() / world_size:.4f} | "
254
                f"Accuracy {acc.item() / world_size:.4f} | "
255
                f"Time {epoch_end - epoch_start:.4f}"
256
257
258
259
260
261
262
263
264
265
266
267
268
269
            )


def run(rank, world_size, args, devices, dataset):
    # Set up multiprocessing environment.
    device = devices[rank]
    torch.cuda.set_device(device)
    dist.init_process_group(
        backend="nccl",  # Use NCCL backend for distributed GPU training
        init_method="tcp://127.0.0.1:12345",
        world_size=world_size,
        rank=rank,
    )

270
    # Pin the graph and features to enable GPU access.
271
    if args.storage_device == "pinned":
272
273
274
275
276
        graph = dataset.graph.pin_memory_()
        feature = dataset.feature.pin_memory_()
    else:
        graph = dataset.graph.to(args.storage_device)
        feature = dataset.feature.to(args.storage_device)
277

278
279
    train_set = dataset.tasks[0].train_set
    valid_set = dataset.tasks[0].validation_set
280
    test_set = dataset.tasks[0].test_set
281
282
283
    args.fanout = list(map(int, args.fanout.split(",")))
    num_classes = dataset.tasks[0].metadata["num_classes"]

284
    in_size = feature.size("node", None, "feat")[0]
285
286
287
    hidden_size = 256
    out_size = num_classes

288
289
290
    if args.gpu_cache_size > 0 and args.storage_device != "cuda":
        feature._features[("node", None, "feat")] = gb.GPUCachedFeature(
            feature._features[("node", None, "feat")],
291
292
293
            args.gpu_cache_size,
        )

294
295
296
297
    # Create GraphSAGE model. It should be copied onto a GPU as a replica.
    model = SAGE(in_size, hidden_size, out_size).to(device)
    model = DDP(model)

298
299
300
    # Create data loaders.
    train_dataloader = create_dataloader(
        args,
301
302
        graph,
        feature,
303
304
        train_set,
        device,
305
        is_train=True,
306
307
308
    )
    valid_dataloader = create_dataloader(
        args,
309
310
        graph,
        feature,
311
312
        valid_set,
        device,
313
        is_train=False,
314
315
316
    )
    test_dataloader = create_dataloader(
        args,
317
318
        graph,
        feature,
319
320
        test_set,
        device,
321
        is_train=False,
322
323
    )

324
325
326
327
328
329
330
    # Model training.
    if rank == 0:
        print("Training...")
    train(
        world_size,
        rank,
        args,
331
332
        train_dataloader,
        valid_dataloader,
333
334
335
336
337
338
339
340
341
342
343
344
        num_classes,
        model,
        device,
    )

    # Test the model.
    if rank == 0:
        print("Testing...")
    test_acc = (
        evaluate(
            rank,
            model,
345
346
347
            test_dataloader,
            num_classes,
            device,
348
349
350
351
        )
        / world_size
    )
    dist.reduce(tensor=test_acc, dst=0)
352
    torch.cuda.synchronize()
353
    if rank == 0:
354
        print(f"Test Accuracy {test_acc.item():.4f}")
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385


def parse_args():
    parser = argparse.ArgumentParser(
        description="A script does a multi-gpu training on a GraphSAGE model "
        "for node classification using GraphBolt dataloader."
    )
    parser.add_argument(
        "--gpu",
        type=str,
        default="0",
        help="GPU(s) in use. Can be a list of gpu ids for multi-gpu training,"
        " e.g., 0,1,2,3.",
    )
    parser.add_argument(
        "--epochs", type=int, default=10, help="Number of training epochs."
    )
    parser.add_argument(
        "--lr",
        type=float,
        default=0.001,
        help="Learning rate for optimization.",
    )
    parser.add_argument(
        "--batch-size", type=int, default=1024, help="Batch size for training."
    )
    parser.add_argument(
        "--fanout",
        type=str,
        default="10,10,10",
        help="Fan-out of neighbor sampling. It is IMPORTANT to keep len(fanout)"
386
        " identical with the number of layers in your model. Default: 10,10,10",
387
    )
388
389
390
    parser.add_argument(
        "--num-workers", type=int, default=0, help="The number of processes."
    )
391
392
393
394
    parser.add_argument(
        "--gpu-cache-size",
        type=int,
        default=0,
395
        help="The capacity of the GPU cache, the number of features to store.",
396
    )
397
    parser.add_argument(
398
399
        "--mode",
        default="pinned-cuda",
400
401
402
        choices=["cpu-cuda", "pinned-cuda", "cuda-cuda"],
        help="Dataset storage placement and Train device: 'cpu' for CPU and RAM"
        ", 'pinned' for pinned memory in RAM, 'cuda' for GPU and GPU memory.",
403
    )
404
405
406
407
408
409
410
411
    return parser.parse_args()


if __name__ == "__main__":
    args = parse_args()
    if not torch.cuda.is_available():
        print(f"Multi-gpu training needs to be in gpu mode.")
        exit(0)
412
    args.storage_device, _ = args.mode.split("-")
413
414
415
416
417
418
419
420
421

    devices = list(map(int, args.gpu.split(",")))
    world_size = len(devices)

    print(f"Training with {world_size} gpus.")

    # Load and preprocess dataset.
    dataset = gb.BuiltinDataset("ogbn-products").load()

422
423
424
    # Thread limiting to avoid resource competition.
    os.environ["OMP_NUM_THREADS"] = str(mp.cpu_count() // 2 // world_size)

425
426
427
428
429
430
431
    mp.set_sharing_strategy("file_system")
    mp.spawn(
        run,
        args=(world_size, args, devices, dataset),
        nprocs=world_size,
        join=True,
    )