node_classification.py 13.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
"""
This script trains and tests a GraphSAGE model for node classification on
multiple GPUs using distributed data-parallel training (DDP) and GraphBolt
data loader. 

Before reading this example, please familiar yourself with graphsage node
classification using GtaphBolt data loader by reading the example in the
`examples/sampling/graphbolt/node_classification.py`.

For the usage of DDP provided by PyTorch, please read its documentation:
https://pytorch.org/tutorials/beginner/dist_overview.html and
https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParal
lel.html

This flowchart describes the main functional sequence of the provided example:
main

├───> OnDiskDataset pre-processing

└───> run (multiprocessing) 

      ├───> Init process group and build distributed SAGE model (HIGHLIGHT)

      ├───> train
      │     │
      │     ├───> Get GraphBolt dataloader with DistributedItemSampler
      │     │     (HIGHLIGHT)
      │     │
      │     └───> Training loop
      │           │
      │           ├───> SAGE.forward
      │           │
      │           ├───> Validation set evaluation
      │           │
      │           └───> Collect accuracy and loss from all ranks (HIGHLIGHT)

      └───> Test set evaluation
"""
import argparse
import os
41
import time
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

import dgl.graphbolt as gb
import dgl.nn as dglnn
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn as nn
import torch.nn.functional as F
import torchmetrics.functional as MF
import tqdm
from torch.distributed.algorithms.join import Join
from torch.nn.parallel import DistributedDataParallel as DDP


class SAGE(nn.Module):
    def __init__(self, in_size, hidden_size, out_size):
        super().__init__()
        self.layers = nn.ModuleList()
        # Three-layer GraphSAGE-mean.
        self.layers.append(dglnn.SAGEConv(in_size, hidden_size, "mean"))
        self.layers.append(dglnn.SAGEConv(hidden_size, hidden_size, "mean"))
        self.layers.append(dglnn.SAGEConv(hidden_size, out_size, "mean"))
        self.dropout = nn.Dropout(0.5)
        self.hidden_size = hidden_size
        self.out_size = out_size
        # Set the dtype for the layers manually.
        self.set_layer_dtype(torch.float32)

    def set_layer_dtype(self, dtype):
        for layer in self.layers:
            for param in layer.parameters():
                param.data = param.data.to(dtype)

    def forward(self, blocks, x):
        hidden_x = x
        for layer_idx, (layer, block) in enumerate(zip(self.layers, blocks)):
            hidden_x = layer(block, hidden_x)
            is_last_layer = layer_idx == len(self.layers) - 1
            if not is_last_layer:
                hidden_x = F.relu(hidden_x)
                hidden_x = self.dropout(hidden_x)
        return hidden_x


def create_dataloader(
    args,
    graph,
    features,
    itemset,
    device,
92
    is_train,
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
):
    ############################################################################
    # [HIGHLIGHT]
    # Get a GraphBolt dataloader for node classification tasks with multi-gpu
    # distributed training. DistributedItemSampler instead of ItemSampler should
    # be used.
    ############################################################################

    ############################################################################
    # [Note]:
    # gb.DistributedItemSampler()
    # [Input]:
    # 'item_set': The current dataset. (e.g. `train_set` or `valid_set`)
    # 'batch_size': Specifies the number of samples to be processed together,
    # referred to as a 'mini-batch'. (The term 'mini-batch' is used here to
    # indicate a subset of the entire dataset that is processed together. This
    # is in contrast to processing the entire dataset, known as a 'full batch'.)
    # 'drop_last': Determines whether the last non-full minibatch should be
    # dropped.
    # 'shuffle': Determines if the items should be shuffled.
    # 'num_replicas': Specifies the number of replicas.
    # 'drop_uneven_inputs': Determines whether the numbers of minibatches on all
    # ranks should be kept the same by dropping uneven minibatches.
    # [Output]:
    # An DistributedItemSampler object for handling mini-batch sampling on
    # multiple replicas.
    ############################################################################
    datapipe = gb.DistributedItemSampler(
        item_set=itemset,
        batch_size=args.batch_size,
123
124
125
        drop_last=is_train,
        shuffle=is_train,
        drop_uneven_inputs=is_train,
126
127
128
129
130
131
132
133
134
    )
    ############################################################################
    # [Note]:
    # datapipe.copy_to() / gb.CopyTo()
    # [Input]:
    # 'device': The specified device that data should be copied to.
    # [Output]:
    # A CopyTo object copying data in the datapipe to a specified device.\
    ############################################################################
135
    if args.storage_device != "cpu":
136
137
138
        datapipe = datapipe.copy_to(device, extra_attrs=["seed_nodes"])
    datapipe = datapipe.sample_neighbor(graph, args.fanout)
    datapipe = datapipe.fetch_feature(features, node_feature_keys=["feat"])
139
    if args.storage_device == "cpu":
140
141
        datapipe = datapipe.copy_to(device)

142
143
144
145
    # Until https://github.com/dmlc/dgl/issues/7008, overlap should be False.
    dataloader = gb.DataLoader(
        datapipe, args.num_workers, overlap_feature_fetch=False
    )
146
147
148
149
150
151

    # Return the fully-initialized DataLoader object.
    return dataloader


@torch.no_grad()
152
def evaluate(rank, model, dataloader, num_classes, device):
153
154
155
156
157
158
159
160
    model.eval()
    y = []
    y_hats = []

    for step, data in (
        tqdm.tqdm(enumerate(dataloader)) if rank == 0 else enumerate(dataloader)
    ):
        blocks = data.blocks
161
        x = data.node_features["feat"]
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
        y.append(data.labels)
        y_hats.append(model.module(blocks, x))

    res = MF.accuracy(
        torch.cat(y_hats),
        torch.cat(y),
        task="multiclass",
        num_classes=num_classes,
    )

    return res.to(device)


def train(
    world_size,
    rank,
    args,
179
180
    train_dataloader,
    valid_dataloader,
181
182
183
184
185
186
187
    num_classes,
    model,
    device,
):
    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)

    for epoch in range(args.epochs):
188
189
        epoch_start = time.time()

190
        model.train()
191
        total_loss = torch.tensor(0, dtype=torch.float, device=device)
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
        ########################################################################
        # (HIGHLIGHT) Use Join Context Manager to solve uneven input problem.
        #
        # The mechanics of Distributed Data Parallel (DDP) training in PyTorch
        # requires the number of inputs are the same for all ranks, otherwise
        # the program may error or hang. To solve it, PyTorch provides Join
        # Context Manager. Please refer to
        # https://pytorch.org/tutorials/advanced/generic_join.html for detailed
        # information.
        #
        # Another method is to set `drop_uneven_inputs` as True in GraphBolt's
        # DistributedItemSampler, which will solve this problem by dropping
        # uneven inputs.
        ########################################################################
        with Join([model]):
            for step, data in (
208
                tqdm.tqdm(enumerate(train_dataloader))
209
                if rank == 0
210
                else enumerate(train_dataloader)
211
212
213
            ):
                # The input features are from the source nodes in the first
                # layer's computation graph.
214
                x = data.node_features["feat"]
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

                # The ground truth labels are from the destination nodes
                # in the last layer's computation graph.
                y = data.labels

                blocks = data.blocks

                y_hat = model(blocks, x)

                # Compute loss.
                loss = F.cross_entropy(y_hat, y)

                optimizer.zero_grad()
                loss.backward()
                optimizer.step()

231
                total_loss += loss.detach()
232
233
234
235

        # Evaluate the model.
        if rank == 0:
            print("Validating...")
236
237
238
239
240
241
        acc = evaluate(
            rank,
            model,
            valid_dataloader,
            num_classes,
            device,
242
243
244
245
246
247
248
249
250
251
252
        )
        ########################################################################
        # (HIGHLIGHT) Collect accuracy and loss values from sub-processes and
        # obtain overall average values.
        #
        # `torch.distributed.reduce` is used to reduce tensors from all the
        # sub-processes to a specified process, ReduceOp.SUM is used by default.
        ########################################################################
        dist.reduce(tensor=acc, dst=0)
        total_loss /= step + 1
        dist.reduce(tensor=total_loss, dst=0)
253
254

        epoch_end = time.time()
255
256
257
258
        if rank == 0:
            print(
                f"Epoch {epoch:05d} | "
                f"Average Loss {total_loss.item() / world_size:.4f} | "
259
                f"Accuracy {acc.item() / world_size:.4f} | "
260
                f"Time {epoch_end - epoch_start:.4f}"
261
262
263
264
265
266
267
268
269
270
271
272
273
274
            )


def run(rank, world_size, args, devices, dataset):
    # Set up multiprocessing environment.
    device = devices[rank]
    torch.cuda.set_device(device)
    dist.init_process_group(
        backend="nccl",  # Use NCCL backend for distributed GPU training
        init_method="tcp://127.0.0.1:12345",
        world_size=world_size,
        rank=rank,
    )

275
    # Pin the graph and features to enable GPU access.
276
    if args.storage_device == "pinned":
277
278
279
        dataset.graph.pin_memory_()
        dataset.feature.pin_memory_()

280
281
    train_set = dataset.tasks[0].train_set
    valid_set = dataset.tasks[0].validation_set
282
    test_set = dataset.tasks[0].test_set
283
284
285
    args.fanout = list(map(int, args.fanout.split(",")))
    num_classes = dataset.tasks[0].metadata["num_classes"]

286
    in_size = dataset.feature.size("node", None, "feat")[0]
287
288
289
290
291
292
293
    hidden_size = 256
    out_size = num_classes

    # Create GraphSAGE model. It should be copied onto a GPU as a replica.
    model = SAGE(in_size, hidden_size, out_size).to(device)
    model = DDP(model)

294
295
296
    # Create data loaders.
    train_dataloader = create_dataloader(
        args,
297
298
        dataset.graph,
        dataset.feature,
299
300
        train_set,
        device,
301
        is_train=True,
302
303
304
    )
    valid_dataloader = create_dataloader(
        args,
305
306
        dataset.graph,
        dataset.feature,
307
308
        valid_set,
        device,
309
        is_train=False,
310
311
312
    )
    test_dataloader = create_dataloader(
        args,
313
314
        dataset.graph,
        dataset.feature,
315
316
        test_set,
        device,
317
        is_train=False,
318
319
    )

320
321
322
323
324
325
326
    # Model training.
    if rank == 0:
        print("Training...")
    train(
        world_size,
        rank,
        args,
327
328
        train_dataloader,
        valid_dataloader,
329
330
331
332
333
334
335
336
337
338
339
340
        num_classes,
        model,
        device,
    )

    # Test the model.
    if rank == 0:
        print("Testing...")
    test_acc = (
        evaluate(
            rank,
            model,
341
342
343
            test_dataloader,
            num_classes,
            device,
344
345
346
347
        )
        / world_size
    )
    dist.reduce(tensor=test_acc, dst=0)
348
    torch.cuda.synchronize()
349
    if rank == 0:
350
        print(f"Test Accuracy {test_acc.item():.4f}")
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381


def parse_args():
    parser = argparse.ArgumentParser(
        description="A script does a multi-gpu training on a GraphSAGE model "
        "for node classification using GraphBolt dataloader."
    )
    parser.add_argument(
        "--gpu",
        type=str,
        default="0",
        help="GPU(s) in use. Can be a list of gpu ids for multi-gpu training,"
        " e.g., 0,1,2,3.",
    )
    parser.add_argument(
        "--epochs", type=int, default=10, help="Number of training epochs."
    )
    parser.add_argument(
        "--lr",
        type=float,
        default=0.001,
        help="Learning rate for optimization.",
    )
    parser.add_argument(
        "--batch-size", type=int, default=1024, help="Batch size for training."
    )
    parser.add_argument(
        "--fanout",
        type=str,
        default="10,10,10",
        help="Fan-out of neighbor sampling. It is IMPORTANT to keep len(fanout)"
382
        " identical with the number of layers in your model. Default: 10,10,10",
383
    )
384
385
386
    parser.add_argument(
        "--num-workers", type=int, default=0, help="The number of processes."
    )
387
    parser.add_argument(
388
389
390
391
392
        "--mode",
        default="pinned-cuda",
        choices=["cpu-cuda", "pinned-cuda"],
        help="Dataset storage placement and Train device: 'cpu' for CPU and RAM,"
        " 'pinned' for pinned memory in RAM, 'cuda' for GPU and GPU memory.",
393
    )
394
395
396
397
398
399
400
401
    return parser.parse_args()


if __name__ == "__main__":
    args = parse_args()
    if not torch.cuda.is_available():
        print(f"Multi-gpu training needs to be in gpu mode.")
        exit(0)
402
    args.storage_device, _ = args.mode.split("-")
403
404
405
406
407
408
409
410
411

    devices = list(map(int, args.gpu.split(",")))
    world_size = len(devices)

    print(f"Training with {world_size} gpus.")

    # Load and preprocess dataset.
    dataset = gb.BuiltinDataset("ogbn-products").load()

412
413
414
    # Thread limiting to avoid resource competition.
    os.environ["OMP_NUM_THREADS"] = str(mp.cpu_count() // 2 // world_size)

415
416
417
418
419
420
421
    mp.set_sharing_strategy("file_system")
    mp.spawn(
        run,
        args=(world_size, args, devices, dataset),
        nprocs=world_size,
        join=True,
    )