entity_sample_multi_gpu.py 5.63 KB
Newer Older
Mufei Li's avatar
Mufei Li committed
1
2
"""
Differences compared to tkipf/relation-gcn
3
* weight decay applied to all weights
Mufei Li's avatar
Mufei Li committed
4
5
6
7
8
9
10
11
12
13
14
15
"""
import argparse
import gc
import torch as th
import torch.nn.functional as F
import dgl.multiprocessing as mp
import dgl

from torchmetrics.functional import accuracy
from torch.nn.parallel import DistributedDataParallel

from entity_utils import load_data
16
17
from entity_sample import init_dataloaders, train, evaluate
from model import RGCN
Mufei Li's avatar
Mufei Li committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

def collect_eval(n_gpus, queue, labels):
    eval_logits = []
    eval_seeds = []
    for _ in range(n_gpus):
        eval_l, eval_s = queue.get()
        eval_logits.append(eval_l)
        eval_seeds.append(eval_s)
    eval_logits = th.cat(eval_logits)
    eval_seeds = th.cat(eval_seeds)
    eval_acc = accuracy(eval_logits.argmax(dim=1), labels[eval_seeds].cpu()).item()

    return eval_acc

def run(proc_id, n_gpus, n_cpus, args, devices, dataset, queue=None):
    dev_id = devices[proc_id]
    g, num_classes, num_rels, target_idx, inv_target, train_idx,\
        test_idx, labels = dataset

    dist_init_method = 'tcp://{master_ip}:{master_port}'.format(
        master_ip='127.0.0.1', master_port='12345')
    backend = 'gloo'
    if proc_id == 0:
        print("backend using {}".format(backend))
    th.distributed.init_process_group(backend=backend,
                                      init_method=dist_init_method,
                                      world_size=n_gpus,
                                      rank=proc_id)

    device = th.device(dev_id)
    use_ddp = True if n_gpus > 1 else False
    train_loader, val_loader, test_loader = init_dataloaders(
        args, g, train_idx, test_idx, target_idx, dev_id, use_ddp=use_ddp)

52
53
54
55
56
57
58
59
    model = RGCN(g.num_nodes(),
                 args.n_hidden,
                 num_classes,
                 num_rels,
                 num_bases=args.n_bases,
                 dropout=args.dropout,
                 self_loop=args.use_self_loop,
                 ns_mode=True)
Mufei Li's avatar
Mufei Li committed
60
61
62
63
    labels = labels.to(device)
    model = model.to(device)
    model = DistributedDataParallel(model, device_ids=[dev_id], output_device=dev_id)

64
    optimizer = th.optim.Adam(model.parameters(), lr=1e-2, weight_decay=args.wd)
Mufei Li's avatar
Mufei Li committed
65
66
67

    th.set_num_threads(n_cpus)
    for epoch in range(args.n_epochs):
68
69
        train_acc, loss = train(model, train_loader, inv_target,
                                labels, optimizer)
Mufei Li's avatar
Mufei Li committed
70
71
72
73
74
75
76
77

        if proc_id == 0:
            print("Epoch {:05d}/{:05d} | Train Accuracy: {:.4f} | Train Loss: {:.4f}".format(
                epoch, args.n_epochs, train_acc, loss))

        # garbage collection that empties the queue
        gc.collect()

78
        val_logits, val_seeds = evaluate(model, val_loader, inv_target)
Mufei Li's avatar
Mufei Li committed
79
80
81
82
83
84
85
86
87
        queue.put((val_logits, val_seeds))

        # gather evaluation result from multiple processes
        if proc_id == 0:
            val_acc = collect_eval(n_gpus, queue, labels)
            print("Validation Accuracy: {:.4f}".format(val_acc))

    # garbage collection that empties the queue
    gc.collect()
88
    test_logits, test_seeds = evaluate(model, test_loader, inv_target)
Mufei Li's avatar
Mufei Li committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
    queue.put((test_logits, test_seeds))
    if proc_id == 0:
        test_acc = collect_eval(n_gpus, queue, labels)
        print("Final Test Accuracy: {:.4f}".format(test_acc))
    th.distributed.barrier()

def main(args, devices):
    g, num_rels, num_classes, labels, train_idx, test_idx, target_idx, inv_target = load_data(
        args.dataset, inv_target=True)

    # Create csr/coo/csc formats before launching training processes.
    # This avoids creating certain formats in each sub-process, which saves momory and CPU.
    g.create_formats_()

    n_gpus = len(devices)
    n_cpus = mp.cpu_count()
    queue = mp.Queue(n_gpus)
    procs = []
    for proc_id in range(n_gpus):
        # We use distributed data parallel dataloader to handle the data splitting
        p = mp.Process(target=run, args=(proc_id, n_gpus, n_cpus // n_gpus, args, devices,
                                        (g, num_classes, num_rels, target_idx,
                                         inv_target, train_idx, test_idx, labels),
                                         queue))
        p.start()
        procs.append(p)
    for p in procs:
        p.join()

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='RGCN for entity classification with sampling and multiple gpus')
    parser.add_argument("--dropout", type=float, default=0,
                        help="dropout probability")
    parser.add_argument("--n-hidden", type=int, default=16,
                        help="number of hidden units")
    parser.add_argument("--gpu", type=str, default='0',
                        help="gpu")
    parser.add_argument("--n-bases", type=int, default=-1,
                        help="number of filter weight matrices, default: -1 [use all]")
    parser.add_argument("--n-epochs", type=int, default=50,
                        help="number of training epochs")
    parser.add_argument("-d", "--dataset", type=str, required=True,
                        choices=['aifb', 'mutag', 'bgs', 'am'],
                        help="dataset to use")
133
134
    parser.add_argument("--wd", type=float, default=5e-4,
                        help="weight decay")
Mufei Li's avatar
Mufei Li committed
135
136
137
138
139
140
141
142
143
144
145
    parser.add_argument("--fanout", type=str, default="4, 4",
                        help="Fan-out of neighbor sampling")
    parser.add_argument("--use-self-loop", default=False, action='store_true',
                        help="include self feature as a special relation")
    parser.add_argument("--batch-size", type=int, default=100,
                        help="Mini-batch size. ")
    args = parser.parse_args()
    devices = list(map(int, args.gpu.split(',')))

    print(args)
    main(args, devices)