entity_sample_multi_gpu.py 5.86 KB
Newer Older
Mufei Li's avatar
Mufei Li committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
"""
Differences compared to tkipf/relation-gcn
* l2norm applied to all weights
* remove nodes that won't be touched
"""
import argparse
import gc
import torch as th
import torch.nn.functional as F
import dgl.multiprocessing as mp
import dgl

from torchmetrics.functional import accuracy
from torch.nn.parallel import DistributedDataParallel

from entity_utils import load_data
from entity_sample import init_dataloaders, init_models, train, evaluate

def collect_eval(n_gpus, queue, labels):
    eval_logits = []
    eval_seeds = []
    for _ in range(n_gpus):
        eval_l, eval_s = queue.get()
        eval_logits.append(eval_l)
        eval_seeds.append(eval_s)
    eval_logits = th.cat(eval_logits)
    eval_seeds = th.cat(eval_seeds)
    eval_acc = accuracy(eval_logits.argmax(dim=1), labels[eval_seeds].cpu()).item()

    return eval_acc

def run(proc_id, n_gpus, n_cpus, args, devices, dataset, queue=None):
    dev_id = devices[proc_id]
    g, num_classes, num_rels, target_idx, inv_target, train_idx,\
        test_idx, labels = dataset

    dist_init_method = 'tcp://{master_ip}:{master_port}'.format(
        master_ip='127.0.0.1', master_port='12345')
    backend = 'gloo'
    if proc_id == 0:
        print("backend using {}".format(backend))
    th.distributed.init_process_group(backend=backend,
                                      init_method=dist_init_method,
                                      world_size=n_gpus,
                                      rank=proc_id)

    device = th.device(dev_id)
    use_ddp = True if n_gpus > 1 else False
    train_loader, val_loader, test_loader = init_dataloaders(
        args, g, train_idx, test_idx, target_idx, dev_id, use_ddp=use_ddp)
    embed_layer, model = init_models(args, device, g.num_nodes(), num_classes, num_rels)

    labels = labels.to(device)
    model = model.to(device)
    model = DistributedDataParallel(model, device_ids=[dev_id], output_device=dev_id)
    embed_layer = DistributedDataParallel(embed_layer, device_ids=None, output_device=None)

    emb_optimizer = th.optim.SparseAdam(embed_layer.module.parameters(), lr=args.sparse_lr)
    optimizer = th.optim.Adam(model.parameters(), lr=1e-2, weight_decay=args.l2norm)

    th.set_num_threads(n_cpus)
    for epoch in range(args.n_epochs):
        train_loader.set_epoch(epoch)
        train_acc, loss = train(model, embed_layer, train_loader, inv_target,
                                labels, emb_optimizer, optimizer)

        if proc_id == 0:
            print("Epoch {:05d}/{:05d} | Train Accuracy: {:.4f} | Train Loss: {:.4f}".format(
                epoch, args.n_epochs, train_acc, loss))

        # garbage collection that empties the queue
        gc.collect()

        val_logits, val_seeds = evaluate(model, embed_layer, val_loader, inv_target)
        queue.put((val_logits, val_seeds))

        # gather evaluation result from multiple processes
        if proc_id == 0:
            val_acc = collect_eval(n_gpus, queue, labels)
            print("Validation Accuracy: {:.4f}".format(val_acc))

    # garbage collection that empties the queue
    gc.collect()
    test_logits, test_seeds = evaluate(model, embed_layer, test_loader, inv_target)
    queue.put((test_logits, test_seeds))
    if proc_id == 0:
        test_acc = collect_eval(n_gpus, queue, labels)
        print("Final Test Accuracy: {:.4f}".format(test_acc))
    th.distributed.barrier()

def main(args, devices):
    g, num_rels, num_classes, labels, train_idx, test_idx, target_idx, inv_target = load_data(
        args.dataset, inv_target=True)

    # Create csr/coo/csc formats before launching training processes.
    # This avoids creating certain formats in each sub-process, which saves momory and CPU.
    g.create_formats_()

    n_gpus = len(devices)
    n_cpus = mp.cpu_count()
    queue = mp.Queue(n_gpus)
    procs = []
    for proc_id in range(n_gpus):
        # We use distributed data parallel dataloader to handle the data splitting
        p = mp.Process(target=run, args=(proc_id, n_gpus, n_cpus // n_gpus, args, devices,
                                        (g, num_classes, num_rels, target_idx,
                                         inv_target, train_idx, test_idx, labels),
                                         queue))
        p.start()
        procs.append(p)
    for p in procs:
        p.join()

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='RGCN for entity classification with sampling and multiple gpus')
    parser.add_argument("--dropout", type=float, default=0,
                        help="dropout probability")
    parser.add_argument("--n-hidden", type=int, default=16,
                        help="number of hidden units")
    parser.add_argument("--gpu", type=str, default='0',
                        help="gpu")
    parser.add_argument("--sparse-lr", type=float, default=2e-2,
                        help="sparse embedding learning rate")
    parser.add_argument("--n-bases", type=int, default=-1,
                        help="number of filter weight matrices, default: -1 [use all]")
    parser.add_argument("--n-epochs", type=int, default=50,
                        help="number of training epochs")
    parser.add_argument("-d", "--dataset", type=str, required=True,
                        choices=['aifb', 'mutag', 'bgs', 'am'],
                        help="dataset to use")
    parser.add_argument("--l2norm", type=float, default=5e-4,
                        help="l2 norm coef")
    parser.add_argument("--fanout", type=str, default="4, 4",
                        help="Fan-out of neighbor sampling")
    parser.add_argument("--use-self-loop", default=False, action='store_true',
                        help="include self feature as a special relation")
    parser.add_argument("--batch-size", type=int, default=100,
                        help="Mini-batch size. ")
    args = parser.parse_args()
    devices = list(map(int, args.gpu.split(',')))

    print(args)
    main(args, devices)