test_graph_batch.py 3.45 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import networkx as nx
import dgl
import torch
import numpy as np

def tree1():
    """Generate a tree
         0
        / \
       1   2
      / \
     3   4
    Edges are from leaves to root.
    """
    g = dgl.DGLGraph()
    g.add_node(0)
    g.add_node(1)
    g.add_node(2)
    g.add_node(3)
    g.add_node(4)
    g.add_edge(3, 1)
    g.add_edge(4, 1)
    g.add_edge(1, 0)
    g.add_edge(2, 0)
    g.set_n_repr(torch.Tensor([0, 1, 2, 3, 4]))
26
    g.set_e_repr(torch.randn(4, 10))
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
    return g

def tree2():
    """Generate a tree
         1
        / \
       4   3
      / \
     2   0
    Edges are from leaves to root.
    """
    g = dgl.DGLGraph()
    g.add_node(0)
    g.add_node(1)
    g.add_node(2)
    g.add_node(3)
    g.add_node(4)
    g.add_edge(2, 4)
    g.add_edge(0, 4)
    g.add_edge(4, 1)
    g.add_edge(3, 1)
    g.set_n_repr(torch.Tensor([0, 1, 2, 3, 4]))
49
    g.set_e_repr(torch.randn(4, 10))
50
51
52
53
54
    return g

def test_batch_unbatch():
    t1 = tree1()
    t2 = tree2()
55
56
57
58
    n1 = t1.get_n_repr()
    n2 = t2.get_n_repr()
    e1 = t1.get_e_repr()
    e2 = t2.get_e_repr()
59
60
61
62

    bg = dgl.batch([t1, t2])
    dgl.unbatch(bg)

63
64
65
66
    assert(n1.equal(t1.get_n_repr()))
    assert(n2.equal(t2.get_n_repr()))
    assert(e1.equal(t1.get_e_repr()))
    assert(e2.equal(t2.get_e_repr()))
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83


def test_batch_sendrecv():
    t1 = tree1()
    t2 = tree2()

    bg = dgl.batch([t1, t2])
    bg.register_message_func(lambda src, edge: src, batchable=True)
    bg.register_reduce_func(lambda node, msgs: torch.sum(msgs, 1), batchable=True)
    e1 = [(3, 1), (4, 1)]
    e2 = [(2, 4), (0, 4)]

    u1, v1 = bg.query_new_edge(t1, *zip(*e1))
    u2, v2 = bg.query_new_edge(t2, *zip(*e2))
    u = np.concatenate((u1, u2)).tolist()
    v = np.concatenate((v1, v2)).tolist()

84
    bg.send(u, v)
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
    bg.recv(v)

    dgl.unbatch(bg)
    assert t1.get_n_repr()[1] == 7
    assert t2.get_n_repr()[4] == 2


def test_batch_propagate():
    t1 = tree1()
    t2 = tree2()

    bg = dgl.batch([t1, t2])
    bg.register_message_func(lambda src, edge: src, batchable=True)
    bg.register_reduce_func(lambda node, msgs: torch.sum(msgs, 1), batchable=True)
    # get leaves.

    order = []

    # step 1
    e1 = [(3, 1), (4, 1)]
    e2 = [(2, 4), (0, 4)]
    u1, v1 = bg.query_new_edge(t1, *zip(*e1))
    u2, v2 = bg.query_new_edge(t2, *zip(*e2))
    u = np.concatenate((u1, u2)).tolist()
    v = np.concatenate((v1, v2)).tolist()
    order.append((u, v))

    # step 2
    e1 = [(1, 0), (2, 0)]
    e2 = [(4, 1), (3, 1)]
    u1, v1 = bg.query_new_edge(t1, *zip(*e1))
    u2, v2 = bg.query_new_edge(t2, *zip(*e2))
    u = np.concatenate((u1, u2)).tolist()
    v = np.concatenate((v1, v2)).tolist()
    order.append((u, v))

    bg.propagate(iterator=order)
    dgl.unbatch(bg)

    assert t1.get_n_repr()[0] == 9
    assert t2.get_n_repr()[1] == 5

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
def test_batched_edge_ordering():
    g1 = dgl.DGLGraph()
    g1.add_nodes_from([0,1,2, 3, 4, 5])
    g1.add_edges_from([(4, 5), (4, 3), (2, 3), (2, 1), (0, 1)])
    g1.edge_list
    e1 = torch.randn(5, 10)
    g1.set_e_repr(e1)
    g2 = dgl.DGLGraph()
    g2.add_nodes_from([0, 1, 2, 3, 4, 5])
    g2.add_edges_from([(0, 1), (1, 2), (2, 3), (5, 4), (4, 3), (5, 0)])
    e2 = torch.randn(6, 10)
    g2.set_e_repr(e2)
    g = dgl.batch([g1, g2])
    r1 = g.get_e_repr()[g.get_edge_id(4, 5)]
    r2 = g1.get_e_repr()[g1.get_edge_id(4, 5)]
    assert torch.equal(r1, r2)
143
144
145

if __name__ == '__main__':
    test_batch_unbatch()
146
    test_batched_edge_ordering()
147
148
    test_batch_sendrecv()
    test_batch_propagate()