cuda_to_block.cu 13.5 KB
Newer Older
1
/*!
2
3
4
5
6
7
8
9
10
11
12
13
14
15
 *  Copyright 2020-2021 Contributors
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
16
 * \file graph/transform/cuda/cuda_to_block.cu
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
 * \brief Functions to convert a set of edges into a graph block with local
 * ids.
 */


#include <dgl/runtime/device_api.h>
#include <dgl/immutable_graph.h>
#include <cuda_runtime.h>
#include <utility>
#include <algorithm>
#include <memory>

#include "../../../runtime/cuda/cuda_common.h"
#include "../../heterograph.h"
#include "../to_bipartite.h"
32
#include "cuda_map_edges.cuh"
33
34
35

using namespace dgl::aten;
using namespace dgl::runtime::cuda;
36
using namespace dgl::transform::cuda;
37
38
39
40
41
42
43
44
45

namespace dgl {
namespace transform {

namespace {

template<typename IdType>
class DeviceNodeMapMaker {
 public:
Hongzhi (Steve), Chen's avatar
Hongzhi (Steve), Chen committed
46
  explicit DeviceNodeMapMaker(
47
48
49
50
51
52
53
54
      const std::vector<int64_t>& maxNodesPerType) :
      max_num_nodes_(0) {
    max_num_nodes_ = *std::max_element(maxNodesPerType.begin(),
        maxNodesPerType.end());
  }

  /**
  * \brief This function builds node maps for each node type, preserving the
55
56
  * order of the input nodes. Here it is assumed the lhs_nodes are not unique,
  * and thus a unique list is generated.
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
  *
  * \param lhs_nodes The set of source input nodes.
  * \param rhs_nodes The set of destination input nodes.
  * \param node_maps The node maps to be constructed.
  * \param count_lhs_device The number of unique source nodes (on the GPU).
  * \param lhs_device The unique source nodes (on the GPU).
  * \param stream The stream to operate on.
  */
  void Make(
      const std::vector<IdArray>& lhs_nodes,
      const std::vector<IdArray>& rhs_nodes,
      DeviceNodeMap<IdType> * const node_maps,
      int64_t * const count_lhs_device,
      std::vector<IdArray>* const lhs_device,
      cudaStream_t stream) {
    const int64_t num_ntypes = lhs_nodes.size() + rhs_nodes.size();

    CUDA_CALL(cudaMemsetAsync(
      count_lhs_device,
      0,
      num_ntypes*sizeof(*count_lhs_device),
      stream));

    // possibly dublicate lhs nodes
    const int64_t lhs_num_ntypes = static_cast<int64_t>(lhs_nodes.size());
    for (int64_t ntype = 0; ntype < lhs_num_ntypes; ++ntype) {
      const IdArray& nodes = lhs_nodes[ntype];
      if (nodes->shape[0] > 0) {
85
        CHECK_EQ(nodes->ctx.device_type, kDGLCUDA);
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
        node_maps->LhsHashTable(ntype).FillWithDuplicates(
            nodes.Ptr<IdType>(),
            nodes->shape[0],
            (*lhs_device)[ntype].Ptr<IdType>(),
            count_lhs_device+ntype,
            stream);
      }
    }

    // unique rhs nodes
    const int64_t rhs_num_ntypes = static_cast<int64_t>(rhs_nodes.size());
    for (int64_t ntype = 0; ntype < rhs_num_ntypes; ++ntype) {
      const IdArray& nodes = rhs_nodes[ntype];
      if (nodes->shape[0] > 0) {
        node_maps->RhsHashTable(ntype).FillWithUnique(
            nodes.Ptr<IdType>(),
            nodes->shape[0],
            stream);
      }
    }
  }

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
  /**
  * \brief This function builds node maps for each node type, preserving the
  * order of the input nodes. Here it is assumed both lhs_nodes and rhs_nodes
  * are unique.
  *
  * \param lhs_nodes The set of source input nodes.
  * \param rhs_nodes The set of destination input nodes.
  * \param node_maps The node maps to be constructed.
  * \param stream The stream to operate on.
  */
  void Make(
      const std::vector<IdArray>& lhs_nodes,
      const std::vector<IdArray>& rhs_nodes,
      DeviceNodeMap<IdType> * const node_maps,
      cudaStream_t stream) {
    const int64_t num_ntypes = lhs_nodes.size() + rhs_nodes.size();

    // unique lhs nodes
    const int64_t lhs_num_ntypes = static_cast<int64_t>(lhs_nodes.size());
    for (int64_t ntype = 0; ntype < lhs_num_ntypes; ++ntype) {
      const IdArray& nodes = lhs_nodes[ntype];
      if (nodes->shape[0] > 0) {
130
        CHECK_EQ(nodes->ctx.device_type, kDGLCUDA);
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
        node_maps->LhsHashTable(ntype).FillWithUnique(
            nodes.Ptr<IdType>(),
            nodes->shape[0],
            stream);
      }
    }

    // unique rhs nodes
    const int64_t rhs_num_ntypes = static_cast<int64_t>(rhs_nodes.size());
    for (int64_t ntype = 0; ntype < rhs_num_ntypes; ++ntype) {
      const IdArray& nodes = rhs_nodes[ntype];
      if (nodes->shape[0] > 0) {
        node_maps->RhsHashTable(ntype).FillWithUnique(
            nodes.Ptr<IdType>(),
            nodes->shape[0],
            stream);
      }
    }
  }

151
152
153
154
155
156
 private:
  IdType max_num_nodes_;
};


// Since partial specialization is not allowed for functions, use this as an
157
// intermediate for ToBlock where XPU = kDGLCUDA.
158
template<typename IdType>
159
std::tuple<HeteroGraphPtr, std::vector<IdArray>>
160
161
162
ToBlockGPU(
    HeteroGraphPtr graph,
    const std::vector<IdArray> &rhs_nodes,
163
164
165
166
167
    const bool include_rhs_in_lhs,
    std::vector<IdArray>* const lhs_nodes_ptr) {
  std::vector<IdArray>& lhs_nodes = *lhs_nodes_ptr;
  const bool generate_lhs_nodes = lhs_nodes.empty();

168

169
170
  const auto& ctx = graph->Context();
  auto device = runtime::DeviceAPI::Get(ctx);
171
  cudaStream_t stream = runtime::getCurrentCUDAStream();
172

173
  CHECK_EQ(ctx.device_type, kDGLCUDA);
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
  for (const auto& nodes : rhs_nodes) {
    CHECK_EQ(ctx.device_type, nodes->ctx.device_type);
  }

  // Since DST nodes are included in SRC nodes, a common requirement is to fetch
  // the DST node features from the SRC nodes features. To avoid expensive sparse lookup,
  // the function assures that the DST nodes in both SRC and DST sets have the same ids.
  // As a result, given the node feature tensor ``X`` of type ``utype``,
  // the following code finds the corresponding DST node features of type ``vtype``:

  const int64_t num_etypes = graph->NumEdgeTypes();
  const int64_t num_ntypes = graph->NumVertexTypes();

  CHECK(rhs_nodes.size() == static_cast<size_t>(num_ntypes))
    << "rhs_nodes not given for every node type";

  std::vector<EdgeArray> edge_arrays(num_etypes);
  for (int64_t etype = 0; etype < num_etypes; ++etype) {
    const auto src_dst_types = graph->GetEndpointTypes(etype);
    const dgl_type_t dsttype = src_dst_types.second;
    if (!aten::IsNullArray(rhs_nodes[dsttype])) {
      edge_arrays[etype] = graph->Edges(etype);
    }
  }

  // count lhs and rhs nodes
  std::vector<int64_t> maxNodesPerType(num_ntypes*2, 0);
  for (int64_t ntype = 0; ntype < num_ntypes; ++ntype) {
    maxNodesPerType[ntype+num_ntypes] += rhs_nodes[ntype]->shape[0];

204
205
206
207
208
209
    if (generate_lhs_nodes) {
      if (include_rhs_in_lhs) {
        maxNodesPerType[ntype] += rhs_nodes[ntype]->shape[0];
      }
    } else {
      maxNodesPerType[ntype] += lhs_nodes[ntype]->shape[0];
210
211
    }
  }
212
213
214
215
216
217
218
219
220
  if (generate_lhs_nodes) {
    // we don't have lhs_nodes, see we need to count inbound edges to get an
    // upper bound
    for (int64_t etype = 0; etype < num_etypes; ++etype) {
      const auto src_dst_types = graph->GetEndpointTypes(etype);
      const dgl_type_t srctype = src_dst_types.first;
      if (edge_arrays[etype].src.defined()) {
        maxNodesPerType[srctype] += edge_arrays[etype].src->shape[0];
      }
221
222
223
224
225
    }
  }

  // gather lhs_nodes
  std::vector<IdArray> src_nodes(num_ntypes);
226
227
228
229
230
231
232
233
234
235
236
  if (generate_lhs_nodes) {
    std::vector<int64_t> src_node_offsets(num_ntypes, 0);
    for (int64_t ntype = 0; ntype < num_ntypes; ++ntype) {
      src_nodes[ntype] = NewIdArray(maxNodesPerType[ntype], ctx,
          sizeof(IdType)*8);
      if (include_rhs_in_lhs) {
        // place rhs nodes first
        device->CopyDataFromTo(rhs_nodes[ntype].Ptr<IdType>(), 0,
            src_nodes[ntype].Ptr<IdType>(), src_node_offsets[ntype],
            sizeof(IdType)*rhs_nodes[ntype]->shape[0],
            rhs_nodes[ntype]->ctx, src_nodes[ntype]->ctx,
237
            rhs_nodes[ntype]->dtype);
238
239
        src_node_offsets[ntype] += sizeof(IdType)*rhs_nodes[ntype]->shape[0];
      }
240
    }
241
242
243
244
245
246
247
248
249
250
251
    for (int64_t etype = 0; etype < num_etypes; ++etype) {
      const auto src_dst_types = graph->GetEndpointTypes(etype);
      const dgl_type_t srctype = src_dst_types.first;
      if (edge_arrays[etype].src.defined()) {
        device->CopyDataFromTo(
            edge_arrays[etype].src.Ptr<IdType>(), 0,
            src_nodes[srctype].Ptr<IdType>(),
            src_node_offsets[srctype],
            sizeof(IdType)*edge_arrays[etype].src->shape[0],
            rhs_nodes[srctype]->ctx,
            src_nodes[srctype]->ctx,
252
            rhs_nodes[srctype]->dtype);
253
254
255
256
257
258
259

        src_node_offsets[srctype] += sizeof(IdType)*edge_arrays[etype].src->shape[0];
      }
    }
  } else {
    for (int64_t ntype = 0; ntype < num_ntypes; ++ntype) {
      src_nodes[ntype] = lhs_nodes[ntype];
260
261
262
263
264
    }
  }

  // allocate space for map creation process
  DeviceNodeMapMaker<IdType> maker(maxNodesPerType);
265
  DeviceNodeMap<IdType> node_maps(maxNodesPerType, num_ntypes, ctx, stream);
266

267
268
269
270
271
272
  if (generate_lhs_nodes) {
    lhs_nodes.reserve(num_ntypes);
    for (int64_t ntype = 0; ntype < num_ntypes; ++ntype) {
      lhs_nodes.emplace_back(NewIdArray(
          maxNodesPerType[ntype], ctx, sizeof(IdType)*8));
    }
273
274
  }

275
276
  std::vector<int64_t> num_nodes_per_type(num_ntypes*2);
  // populate RHS nodes from what we already know
277
  for (int64_t ntype = 0; ntype < num_ntypes; ++ntype) {
278
    num_nodes_per_type[num_ntypes+ntype] = rhs_nodes[ntype]->shape[0];
279
280
281
  }

  // populate the mappings
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
  if (generate_lhs_nodes) {
    int64_t * count_lhs_device = static_cast<int64_t*>(
        device->AllocWorkspace(ctx, sizeof(int64_t)*num_ntypes*2));

    maker.Make(
        src_nodes,
        rhs_nodes,
        &node_maps,
        count_lhs_device,
        &lhs_nodes,
        stream);

    device->CopyDataFromTo(
        count_lhs_device, 0,
        num_nodes_per_type.data(), 0,
        sizeof(*num_nodes_per_type.data())*num_ntypes,
        ctx,
299
300
        DGLContext{kDGLCPU, 0},
        DGLDataType{kDGLInt, 64, 1});
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
    device->StreamSync(ctx, stream);

    // wait for the node counts to finish transferring
    device->FreeWorkspace(ctx, count_lhs_device);
  } else {
    maker.Make(
        lhs_nodes,
        rhs_nodes,
        &node_maps,
        stream);

    for (int64_t ntype = 0; ntype < num_ntypes; ++ntype) {
      num_nodes_per_type[ntype] = lhs_nodes[ntype]->shape[0];
    }
  }
316
317
318
319
320
321
322
323

  std::vector<IdArray> induced_edges;
  induced_edges.reserve(num_etypes);
  for (int64_t etype = 0; etype < num_etypes; ++etype) {
    if (edge_arrays[etype].id.defined()) {
      induced_edges.push_back(edge_arrays[etype].id);
    } else {
      induced_edges.push_back(
324
            aten::NullArray(DGLDataType{kDGLInt, sizeof(IdType)*8, 1}, ctx));
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
    }
  }

  // build metagraph -- small enough to be done on CPU
  const auto meta_graph = graph->meta_graph();
  const EdgeArray etypes = meta_graph->Edges("eid");
  const IdArray new_dst = Add(etypes.dst, num_ntypes);
  const auto new_meta_graph = ImmutableGraph::CreateFromCOO(
      num_ntypes * 2, etypes.src, new_dst);

  // allocate vector for graph relations while GPU is busy
  std::vector<HeteroGraphPtr> rel_graphs;
  rel_graphs.reserve(num_etypes);

  // map node numberings from global to local, and build pointer for CSR
  std::vector<IdArray> new_lhs;
  std::vector<IdArray> new_rhs;
  std::tie(new_lhs, new_rhs) = MapEdges(graph, edge_arrays, node_maps, stream);

  // resize lhs nodes
345
346
347
348
  if (generate_lhs_nodes) {
    for (int64_t ntype = 0; ntype < num_ntypes; ++ntype) {
      lhs_nodes[ntype]->shape[0] = num_nodes_per_type[ntype];
    }
349
350
351
352
353
354
355
356
357
358
359
360
  }

  // build the heterograph
  for (int64_t etype = 0; etype < num_etypes; ++etype) {
    const auto src_dst_types = graph->GetEndpointTypes(etype);
    const dgl_type_t srctype = src_dst_types.first;
    const dgl_type_t dsttype = src_dst_types.second;

    if (rhs_nodes[dsttype]->shape[0] == 0) {
      // No rhs nodes are given for this edge type. Create an empty graph.
      rel_graphs.push_back(CreateFromCOO(
          2, lhs_nodes[srctype]->shape[0], rhs_nodes[dsttype]->shape[0],
361
362
          aten::NullArray(DGLDataType{kDGLInt, sizeof(IdType)*8, 1}, ctx),
          aten::NullArray(DGLDataType{kDGLInt, sizeof(IdType)*8, 1}, ctx)));
363
364
365
366
367
368
369
370
371
372
373
374
375
376
    } else {
      rel_graphs.push_back(CreateFromCOO(
          2,
          lhs_nodes[srctype]->shape[0],
          rhs_nodes[dsttype]->shape[0],
          new_lhs[etype],
          new_rhs[etype]));
    }
  }

  HeteroGraphPtr new_graph = CreateHeteroGraph(
      new_meta_graph, rel_graphs, num_nodes_per_type);

  // return the new graph, the new src nodes, and new edges
377
  return std::make_tuple(new_graph, induced_edges);
378
379
380
381
}

}  // namespace

382
383
384
// Use explicit names to get around MSVC's broken mangling that thinks the following two
// functions are the same.
// Using template<> fails to export the symbols.
385
std::tuple<HeteroGraphPtr, std::vector<IdArray>>
386
// ToBlock<kDGLCUDA, int32_t>
387
ToBlockGPU32(
388
389
    HeteroGraphPtr graph,
    const std::vector<IdArray> &rhs_nodes,
390
391
392
    bool include_rhs_in_lhs,
    std::vector<IdArray>* const lhs_nodes) {
  return ToBlockGPU<int32_t>(graph, rhs_nodes, include_rhs_in_lhs, lhs_nodes);
393
394
}

395
std::tuple<HeteroGraphPtr, std::vector<IdArray>>
396
// ToBlock<kDGLCUDA, int64_t>
397
ToBlockGPU64(
398
399
    HeteroGraphPtr graph,
    const std::vector<IdArray> &rhs_nodes,
400
401
402
    bool include_rhs_in_lhs,
    std::vector<IdArray>* const lhs_nodes) {
  return ToBlockGPU<int64_t>(graph, rhs_nodes, include_rhs_in_lhs, lhs_nodes);
403
404
405
406
}

}  // namespace transform
}  // namespace dgl