cuda_to_block.cu 13.3 KB
Newer Older
1
/*!
2
3
4
5
6
7
8
9
10
11
12
13
14
15
 *  Copyright 2020-2021 Contributors
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
16
 * \file graph/transform/cuda/cuda_to_block.cu
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
 * \brief Functions to convert a set of edges into a graph block with local
 * ids.
 */


#include <dgl/runtime/device_api.h>
#include <dgl/immutable_graph.h>
#include <cuda_runtime.h>
#include <utility>
#include <algorithm>
#include <memory>

#include "../../../runtime/cuda/cuda_common.h"
#include "../../heterograph.h"
#include "../to_bipartite.h"
32
#include "cuda_map_edges.cuh"
33
34
35

using namespace dgl::aten;
using namespace dgl::runtime::cuda;
36
using namespace dgl::transform::cuda;
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

namespace dgl {
namespace transform {

namespace {

template<typename IdType>
class DeviceNodeMapMaker {
 public:
  DeviceNodeMapMaker(
      const std::vector<int64_t>& maxNodesPerType) :
      max_num_nodes_(0) {
    max_num_nodes_ = *std::max_element(maxNodesPerType.begin(),
        maxNodesPerType.end());
  }

  /**
  * \brief This function builds node maps for each node type, preserving the
55
56
  * order of the input nodes. Here it is assumed the lhs_nodes are not unique,
  * and thus a unique list is generated.
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
  *
  * \param lhs_nodes The set of source input nodes.
  * \param rhs_nodes The set of destination input nodes.
  * \param node_maps The node maps to be constructed.
  * \param count_lhs_device The number of unique source nodes (on the GPU).
  * \param lhs_device The unique source nodes (on the GPU).
  * \param stream The stream to operate on.
  */
  void Make(
      const std::vector<IdArray>& lhs_nodes,
      const std::vector<IdArray>& rhs_nodes,
      DeviceNodeMap<IdType> * const node_maps,
      int64_t * const count_lhs_device,
      std::vector<IdArray>* const lhs_device,
      cudaStream_t stream) {
    const int64_t num_ntypes = lhs_nodes.size() + rhs_nodes.size();

    CUDA_CALL(cudaMemsetAsync(
      count_lhs_device,
      0,
      num_ntypes*sizeof(*count_lhs_device),
      stream));

    // possibly dublicate lhs nodes
    const int64_t lhs_num_ntypes = static_cast<int64_t>(lhs_nodes.size());
    for (int64_t ntype = 0; ntype < lhs_num_ntypes; ++ntype) {
      const IdArray& nodes = lhs_nodes[ntype];
      if (nodes->shape[0] > 0) {
        CHECK_EQ(nodes->ctx.device_type, kDLGPU);
        node_maps->LhsHashTable(ntype).FillWithDuplicates(
            nodes.Ptr<IdType>(),
            nodes->shape[0],
            (*lhs_device)[ntype].Ptr<IdType>(),
            count_lhs_device+ntype,
            stream);
      }
    }

    // unique rhs nodes
    const int64_t rhs_num_ntypes = static_cast<int64_t>(rhs_nodes.size());
    for (int64_t ntype = 0; ntype < rhs_num_ntypes; ++ntype) {
      const IdArray& nodes = rhs_nodes[ntype];
      if (nodes->shape[0] > 0) {
        node_maps->RhsHashTable(ntype).FillWithUnique(
            nodes.Ptr<IdType>(),
            nodes->shape[0],
            stream);
      }
    }
  }

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
  /**
  * \brief This function builds node maps for each node type, preserving the
  * order of the input nodes. Here it is assumed both lhs_nodes and rhs_nodes
  * are unique.
  *
  * \param lhs_nodes The set of source input nodes.
  * \param rhs_nodes The set of destination input nodes.
  * \param node_maps The node maps to be constructed.
  * \param stream The stream to operate on.
  */
  void Make(
      const std::vector<IdArray>& lhs_nodes,
      const std::vector<IdArray>& rhs_nodes,
      DeviceNodeMap<IdType> * const node_maps,
      cudaStream_t stream) {
    const int64_t num_ntypes = lhs_nodes.size() + rhs_nodes.size();

    // unique lhs nodes
    const int64_t lhs_num_ntypes = static_cast<int64_t>(lhs_nodes.size());
    for (int64_t ntype = 0; ntype < lhs_num_ntypes; ++ntype) {
      const IdArray& nodes = lhs_nodes[ntype];
      if (nodes->shape[0] > 0) {
        CHECK_EQ(nodes->ctx.device_type, kDLGPU);
        node_maps->LhsHashTable(ntype).FillWithUnique(
            nodes.Ptr<IdType>(),
            nodes->shape[0],
            stream);
      }
    }

    // unique rhs nodes
    const int64_t rhs_num_ntypes = static_cast<int64_t>(rhs_nodes.size());
    for (int64_t ntype = 0; ntype < rhs_num_ntypes; ++ntype) {
      const IdArray& nodes = rhs_nodes[ntype];
      if (nodes->shape[0] > 0) {
        node_maps->RhsHashTable(ntype).FillWithUnique(
            nodes.Ptr<IdType>(),
            nodes->shape[0],
            stream);
      }
    }
  }

151
152
153
154
155
156
157
158
 private:
  IdType max_num_nodes_;
};


// Since partial specialization is not allowed for functions, use this as an
// intermediate for ToBlock where XPU = kDLGPU.
template<typename IdType>
159
std::tuple<HeteroGraphPtr, std::vector<IdArray>>
160
161
162
ToBlockGPU(
    HeteroGraphPtr graph,
    const std::vector<IdArray> &rhs_nodes,
163
164
165
166
167
    const bool include_rhs_in_lhs,
    std::vector<IdArray>* const lhs_nodes_ptr) {
  std::vector<IdArray>& lhs_nodes = *lhs_nodes_ptr;
  const bool generate_lhs_nodes = lhs_nodes.empty();

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
  cudaStream_t stream = 0;
  const auto& ctx = graph->Context();
  auto device = runtime::DeviceAPI::Get(ctx);

  CHECK_EQ(ctx.device_type, kDLGPU);
  for (const auto& nodes : rhs_nodes) {
    CHECK_EQ(ctx.device_type, nodes->ctx.device_type);
  }

  // Since DST nodes are included in SRC nodes, a common requirement is to fetch
  // the DST node features from the SRC nodes features. To avoid expensive sparse lookup,
  // the function assures that the DST nodes in both SRC and DST sets have the same ids.
  // As a result, given the node feature tensor ``X`` of type ``utype``,
  // the following code finds the corresponding DST node features of type ``vtype``:

  const int64_t num_etypes = graph->NumEdgeTypes();
  const int64_t num_ntypes = graph->NumVertexTypes();

  CHECK(rhs_nodes.size() == static_cast<size_t>(num_ntypes))
    << "rhs_nodes not given for every node type";

  std::vector<EdgeArray> edge_arrays(num_etypes);
  for (int64_t etype = 0; etype < num_etypes; ++etype) {
    const auto src_dst_types = graph->GetEndpointTypes(etype);
    const dgl_type_t dsttype = src_dst_types.second;
    if (!aten::IsNullArray(rhs_nodes[dsttype])) {
      edge_arrays[etype] = graph->Edges(etype);
    }
  }

  // count lhs and rhs nodes
  std::vector<int64_t> maxNodesPerType(num_ntypes*2, 0);
  for (int64_t ntype = 0; ntype < num_ntypes; ++ntype) {
    maxNodesPerType[ntype+num_ntypes] += rhs_nodes[ntype]->shape[0];

203
204
205
206
207
208
    if (generate_lhs_nodes) {
      if (include_rhs_in_lhs) {
        maxNodesPerType[ntype] += rhs_nodes[ntype]->shape[0];
      }
    } else {
      maxNodesPerType[ntype] += lhs_nodes[ntype]->shape[0];
209
210
    }
  }
211
212
213
214
215
216
217
218
219
  if (generate_lhs_nodes) {
    // we don't have lhs_nodes, see we need to count inbound edges to get an
    // upper bound
    for (int64_t etype = 0; etype < num_etypes; ++etype) {
      const auto src_dst_types = graph->GetEndpointTypes(etype);
      const dgl_type_t srctype = src_dst_types.first;
      if (edge_arrays[etype].src.defined()) {
        maxNodesPerType[srctype] += edge_arrays[etype].src->shape[0];
      }
220
221
222
223
224
    }
  }

  // gather lhs_nodes
  std::vector<IdArray> src_nodes(num_ntypes);
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
  if (generate_lhs_nodes) {
    std::vector<int64_t> src_node_offsets(num_ntypes, 0);
    for (int64_t ntype = 0; ntype < num_ntypes; ++ntype) {
      src_nodes[ntype] = NewIdArray(maxNodesPerType[ntype], ctx,
          sizeof(IdType)*8);
      if (include_rhs_in_lhs) {
        // place rhs nodes first
        device->CopyDataFromTo(rhs_nodes[ntype].Ptr<IdType>(), 0,
            src_nodes[ntype].Ptr<IdType>(), src_node_offsets[ntype],
            sizeof(IdType)*rhs_nodes[ntype]->shape[0],
            rhs_nodes[ntype]->ctx, src_nodes[ntype]->ctx,
            rhs_nodes[ntype]->dtype,
            stream);
        src_node_offsets[ntype] += sizeof(IdType)*rhs_nodes[ntype]->shape[0];
      }
240
    }
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
    for (int64_t etype = 0; etype < num_etypes; ++etype) {
      const auto src_dst_types = graph->GetEndpointTypes(etype);
      const dgl_type_t srctype = src_dst_types.first;
      if (edge_arrays[etype].src.defined()) {
        device->CopyDataFromTo(
            edge_arrays[etype].src.Ptr<IdType>(), 0,
            src_nodes[srctype].Ptr<IdType>(),
            src_node_offsets[srctype],
            sizeof(IdType)*edge_arrays[etype].src->shape[0],
            rhs_nodes[srctype]->ctx,
            src_nodes[srctype]->ctx,
            rhs_nodes[srctype]->dtype,
            stream);

        src_node_offsets[srctype] += sizeof(IdType)*edge_arrays[etype].src->shape[0];
      }
    }
  } else {
    for (int64_t ntype = 0; ntype < num_ntypes; ++ntype) {
      src_nodes[ntype] = lhs_nodes[ntype];
261
262
263
264
265
    }
  }

  // allocate space for map creation process
  DeviceNodeMapMaker<IdType> maker(maxNodesPerType);
266
  DeviceNodeMap<IdType> node_maps(maxNodesPerType, num_ntypes, ctx, stream);
267

268
269
270
271
272
273
  if (generate_lhs_nodes) {
    lhs_nodes.reserve(num_ntypes);
    for (int64_t ntype = 0; ntype < num_ntypes; ++ntype) {
      lhs_nodes.emplace_back(NewIdArray(
          maxNodesPerType[ntype], ctx, sizeof(IdType)*8));
    }
274
275
  }

276
277
  std::vector<int64_t> num_nodes_per_type(num_ntypes*2);
  // populate RHS nodes from what we already know
278
  for (int64_t ntype = 0; ntype < num_ntypes; ++ntype) {
279
    num_nodes_per_type[num_ntypes+ntype] = rhs_nodes[ntype]->shape[0];
280
281
282
  }

  // populate the mappings
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
  if (generate_lhs_nodes) {
    int64_t * count_lhs_device = static_cast<int64_t*>(
        device->AllocWorkspace(ctx, sizeof(int64_t)*num_ntypes*2));

    maker.Make(
        src_nodes,
        rhs_nodes,
        &node_maps,
        count_lhs_device,
        &lhs_nodes,
        stream);

    device->CopyDataFromTo(
        count_lhs_device, 0,
        num_nodes_per_type.data(), 0,
        sizeof(*num_nodes_per_type.data())*num_ntypes,
        ctx,
        DGLContext{kDLCPU, 0},
        DGLType{kDLInt, 64, 1},
        stream);
    device->StreamSync(ctx, stream);

    // wait for the node counts to finish transferring
    device->FreeWorkspace(ctx, count_lhs_device);
  } else {
    maker.Make(
        lhs_nodes,
        rhs_nodes,
        &node_maps,
        stream);

    for (int64_t ntype = 0; ntype < num_ntypes; ++ntype) {
      num_nodes_per_type[ntype] = lhs_nodes[ntype]->shape[0];
    }
  }
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346

  std::vector<IdArray> induced_edges;
  induced_edges.reserve(num_etypes);
  for (int64_t etype = 0; etype < num_etypes; ++etype) {
    if (edge_arrays[etype].id.defined()) {
      induced_edges.push_back(edge_arrays[etype].id);
    } else {
      induced_edges.push_back(
            aten::NullArray(DLDataType{kDLInt, sizeof(IdType)*8, 1}, ctx));
    }
  }

  // build metagraph -- small enough to be done on CPU
  const auto meta_graph = graph->meta_graph();
  const EdgeArray etypes = meta_graph->Edges("eid");
  const IdArray new_dst = Add(etypes.dst, num_ntypes);
  const auto new_meta_graph = ImmutableGraph::CreateFromCOO(
      num_ntypes * 2, etypes.src, new_dst);

  // allocate vector for graph relations while GPU is busy
  std::vector<HeteroGraphPtr> rel_graphs;
  rel_graphs.reserve(num_etypes);

  // map node numberings from global to local, and build pointer for CSR
  std::vector<IdArray> new_lhs;
  std::vector<IdArray> new_rhs;
  std::tie(new_lhs, new_rhs) = MapEdges(graph, edge_arrays, node_maps, stream);

  // resize lhs nodes
347
348
349
350
  if (generate_lhs_nodes) {
    for (int64_t ntype = 0; ntype < num_ntypes; ++ntype) {
      lhs_nodes[ntype]->shape[0] = num_nodes_per_type[ntype];
    }
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
  }

  // build the heterograph
  for (int64_t etype = 0; etype < num_etypes; ++etype) {
    const auto src_dst_types = graph->GetEndpointTypes(etype);
    const dgl_type_t srctype = src_dst_types.first;
    const dgl_type_t dsttype = src_dst_types.second;

    if (rhs_nodes[dsttype]->shape[0] == 0) {
      // No rhs nodes are given for this edge type. Create an empty graph.
      rel_graphs.push_back(CreateFromCOO(
          2, lhs_nodes[srctype]->shape[0], rhs_nodes[dsttype]->shape[0],
          aten::NullArray(DLDataType{kDLInt, sizeof(IdType)*8, 1}, ctx),
          aten::NullArray(DLDataType{kDLInt, sizeof(IdType)*8, 1}, ctx)));
    } else {
      rel_graphs.push_back(CreateFromCOO(
          2,
          lhs_nodes[srctype]->shape[0],
          rhs_nodes[dsttype]->shape[0],
          new_lhs[etype],
          new_rhs[etype]));
    }
  }

  HeteroGraphPtr new_graph = CreateHeteroGraph(
      new_meta_graph, rel_graphs, num_nodes_per_type);

  // return the new graph, the new src nodes, and new edges
379
  return std::make_tuple(new_graph, induced_edges);
380
381
382
383
384
}

}  // namespace

template<>
385
std::tuple<HeteroGraphPtr, std::vector<IdArray>>
386
387
388
ToBlock<kDLGPU, int32_t>(
    HeteroGraphPtr graph,
    const std::vector<IdArray> &rhs_nodes,
389
390
391
    bool include_rhs_in_lhs,
    std::vector<IdArray>* const lhs_nodes) {
  return ToBlockGPU<int32_t>(graph, rhs_nodes, include_rhs_in_lhs, lhs_nodes);
392
393
394
}

template<>
395
std::tuple<HeteroGraphPtr, std::vector<IdArray>>
396
397
398
ToBlock<kDLGPU, int64_t>(
    HeteroGraphPtr graph,
    const std::vector<IdArray> &rhs_nodes,
399
400
401
    bool include_rhs_in_lhs,
    std::vector<IdArray>* const lhs_nodes) {
  return ToBlockGPU<int64_t>(graph, rhs_nodes, include_rhs_in_lhs, lhs_nodes);
402
403
404
405
}

}  // namespace transform
}  // namespace dgl