test_heterograph.py 46 KB
Newer Older
1
2
3
4
5
6
7
8
import dgl
import dgl.function as fn
from collections import Counter
import numpy as np
import scipy.sparse as ssp
import itertools
import backend as F
import networkx as nx
VoVAllen's avatar
VoVAllen committed
9
import unittest
10
11
from dgl import DGLError

12
13
def create_test_heterograph():
    # test heterograph from the docstring, plus a user -- wishes -- game relation
Minjie Wang's avatar
Minjie Wang committed
14
15
16
17
18
19
    # 3 users, 2 games, 2 developers
    # metagraph:
    #    ('user', 'follows', 'user'),
    #    ('user', 'plays', 'game'),
    #    ('user', 'wishes', 'game'),
    #    ('developer', 'develops', 'game')])
20
21

    plays_spmat = ssp.coo_matrix(([1, 1, 1, 1], ([0, 1, 2, 1], [0, 0, 1, 1])))
Minjie Wang's avatar
Minjie Wang committed
22
23
24
25
26
    wishes_nx = nx.DiGraph()
    wishes_nx.add_nodes_from(['u0', 'u1', 'u2'], bipartite=0)
    wishes_nx.add_nodes_from(['g0', 'g1'], bipartite=1)
    wishes_nx.add_edge('u0', 'g1', id=0)
    wishes_nx.add_edge('u2', 'g0', id=1)
27

Minjie Wang's avatar
Minjie Wang committed
28
29
30
31
32
    follows_g = dgl.graph([(0, 1), (1, 2)], 'user', 'follows')
    plays_g = dgl.bipartite(plays_spmat, 'user', 'plays', 'game')
    wishes_g = dgl.bipartite(wishes_nx, 'user', 'wishes', 'game')
    develops_g = dgl.bipartite([(0, 0), (1, 1)], 'developer', 'develops', 'game')
    g = dgl.hetero_from_relations([follows_g, plays_g, wishes_g, develops_g])
33
34
    return g

Minjie Wang's avatar
Minjie Wang committed
35
36
37
38
39
40
41
42
43
44
45
46
47
def create_test_heterograph1():
    edges = []
    edges.extend([(0,1), (1,2)])  # follows
    edges.extend([(0,3), (1,3), (2,4), (1,4)])  # plays
    edges.extend([(0,4), (2,3)])  # wishes
    edges.extend([(5,3), (6,4)])  # develops
    ntypes = F.tensor([0, 0, 0, 1, 1, 2, 2])
    etypes = F.tensor([0, 0, 1, 1, 1, 1, 2, 2, 3, 3])
    g0 = dgl.graph(edges)
    g0.ndata[dgl.NTYPE] = ntypes
    g0.edata[dgl.ETYPE] = etypes
    return dgl.to_hetero(g0, ['user', 'game', 'developer'], ['follows', 'plays', 'wishes', 'develops'])

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
def create_test_heterograph2():
    plays_spmat = ssp.coo_matrix(([1, 1, 1, 1], ([0, 1, 2, 1], [0, 0, 1, 1])))
    wishes_nx = nx.DiGraph()
    wishes_nx.add_nodes_from(['u0', 'u1', 'u2'], bipartite=0)
    wishes_nx.add_nodes_from(['g0', 'g1'], bipartite=1)
    wishes_nx.add_edge('u0', 'g1', id=0)
    wishes_nx.add_edge('u2', 'g0', id=1)
    develops_g = dgl.bipartite([(0, 0), (1, 1)], 'developer', 'develops', 'game')

    g = dgl.heterograph({
        ('user', 'follows', 'user'): [(0, 1), (1, 2)],
        ('user', 'plays', 'game'): plays_spmat,
        ('user', 'wishes', 'game'): wishes_nx,
        ('developer', 'develops', 'game'): develops_g,
        })
    return g

Minjie Wang's avatar
Minjie Wang committed
65
66
67
68
69
70
def get_redfn(name):
    return getattr(F, name)

def test_create():
    g0 = create_test_heterograph()
    g1 = create_test_heterograph1()
71
72
73
    g2 = create_test_heterograph2()
    assert set(g0.ntypes) == set(g1.ntypes) == set(g2.ntypes)
    assert set(g0.canonical_etypes) == set(g1.canonical_etypes) == set(g2.canonical_etypes)
Minjie Wang's avatar
Minjie Wang committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87

    # create from nx complete bipartite graph
    nxg = nx.complete_bipartite_graph(3, 4)
    g = dgl.bipartite(nxg, 'user', 'plays', 'game')
    assert g.ntypes == ['user', 'game']
    assert g.etypes == ['plays']
    assert g.number_of_edges() == 12

    # create from scipy
    spmat = ssp.coo_matrix(([1,1,1], ([0, 0, 1], [2, 3, 2])), shape=(4, 4))
    g = dgl.graph(spmat)
    assert g.number_of_nodes() == 4
    assert g.number_of_edges() == 3

88
89
90
91
92
93
94
95
96
97
    # test inferring number of nodes for heterograph
    g = dgl.heterograph({
        ('l0', 'e0', 'l1'): [(0, 1), (0, 2)],
        ('l0', 'e1', 'l2'): [(2, 2)],
        ('l2', 'e2', 'l2'): [(1, 1), (3, 3)],
        })
    assert g.number_of_nodes('l0') == 3
    assert g.number_of_nodes('l1') == 3
    assert g.number_of_nodes('l2') == 4

98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
    # test if validate flag works
    # homo graph
    fail = False
    try:
        g = dgl.graph(
            ([0, 0, 0, 1, 1, 2], [0, 1, 2, 0, 1, 2]),
            card=2,
            validate=True
        )
    except DGLError:
        fail = True
    finally:
        assert fail, "should catch a DGLError because node ID is out of bound."
    # bipartite graph
    def _test_validate_bipartite(card):
        fail = False
        try:
            g = dgl.bipartite(
                ([0, 0, 1, 1, 2], [1, 1, 2, 2, 3]),
                card=card,
                validate=True
            )
        except DGLError:
            fail = True
        finally:
            assert fail, "should catch a DGLError because node ID is out of bound."

    _test_validate_bipartite((3, 3))
    _test_validate_bipartite((2, 4))

128
129
130
131
def test_query():
    g = create_test_heterograph()

    ntypes = ['user', 'game', 'developer']
Minjie Wang's avatar
Minjie Wang committed
132
    canonical_etypes = [
133
134
135
136
        ('user', 'follows', 'user'),
        ('user', 'plays', 'game'),
        ('user', 'wishes', 'game'),
        ('developer', 'develops', 'game')]
Minjie Wang's avatar
Minjie Wang committed
137
    etypes = ['follows', 'plays', 'wishes', 'develops']
138
139

    # node & edge types
Minjie Wang's avatar
Minjie Wang committed
140
141
142
    assert set(ntypes) == set(g.ntypes)
    assert set(etypes) == set(g.etypes)
    assert set(canonical_etypes) == set(g.canonical_etypes)
143
144
145

    # metagraph
    mg = g.metagraph
Minjie Wang's avatar
Minjie Wang committed
146
    assert set(g.ntypes) == set(mg.nodes)
147
148
149
150
151
152
    etype_triplets = [(u, v, e) for u, v, e in mg.edges(keys=True)]
    assert set([
        ('user', 'user', 'follows'),
        ('user', 'game', 'plays'),
        ('user', 'game', 'wishes'),
        ('developer', 'game', 'develops')]) == set(etype_triplets)
Minjie Wang's avatar
Minjie Wang committed
153
154
    for i in range(len(etypes)):
        assert g.to_canonical_etype(etypes[i]) == canonical_etypes[i]
155
156
157
158
159
160
161

    # number of nodes
    assert [g.number_of_nodes(ntype) for ntype in ntypes] == [3, 2, 2]

    # number of edges
    assert [g.number_of_edges(etype) for etype in etypes] == [2, 4, 2, 2]

Minjie Wang's avatar
Minjie Wang committed
162
163
164
    assert not g.is_multigraph
    assert g.is_readonly

165
166
167
168
    # has_node & has_nodes
    for ntype in ntypes:
        n = g.number_of_nodes(ntype)
        for i in range(n):
Minjie Wang's avatar
Minjie Wang committed
169
170
            assert g.has_node(i, ntype)
        assert not g.has_node(n, ntype)
171
        assert np.array_equal(
Minjie Wang's avatar
Minjie Wang committed
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
            F.asnumpy(g.has_nodes([0, n], ntype)).astype('int32'), [1, 0])

    def _test(g):
        for etype in etypes:
            srcs, dsts = edges[etype]
            for src, dst in zip(srcs, dsts):
                assert g.has_edge_between(src, dst, etype)
            assert F.asnumpy(g.has_edges_between(srcs, dsts, etype)).all()

            srcs, dsts = negative_edges[etype]
            for src, dst in zip(srcs, dsts):
                assert not g.has_edge_between(src, dst, etype)
            assert not F.asnumpy(g.has_edges_between(srcs, dsts, etype)).any()

            srcs, dsts = edges[etype]
            n_edges = len(srcs)

            # predecessors & in_edges & in_degree
            pred = [s for s, d in zip(srcs, dsts) if d == 0]
            assert set(F.asnumpy(g.predecessors(0, etype)).tolist()) == set(pred)
            u, v = g.in_edges([0], etype=etype)
            assert F.asnumpy(v).tolist() == [0] * len(pred)
            assert set(F.asnumpy(u).tolist()) == set(pred)
            assert g.in_degree(0, etype) == len(pred)

            # successors & out_edges & out_degree
            succ = [d for s, d in zip(srcs, dsts) if s == 0]
            assert set(F.asnumpy(g.successors(0, etype)).tolist()) == set(succ)
            u, v = g.out_edges([0], etype=etype)
            assert F.asnumpy(u).tolist() == [0] * len(succ)
            assert set(F.asnumpy(v).tolist()) == set(succ)
            assert g.out_degree(0, etype) == len(succ)

            # edge_id & edge_ids
            for i, (src, dst) in enumerate(zip(srcs, dsts)):
                assert g.edge_id(src, dst, etype=etype) == i
                assert F.asnumpy(g.edge_id(src, dst, etype=etype, force_multi=True)).tolist() == [i]
            assert F.asnumpy(g.edge_ids(srcs, dsts, etype=etype)).tolist() == list(range(n_edges))
            u, v, e = g.edge_ids(srcs, dsts, etype=etype, force_multi=True)
211
212
213
214
            assert F.asnumpy(u).tolist() == srcs
            assert F.asnumpy(v).tolist() == dsts
            assert F.asnumpy(e).tolist() == list(range(n_edges))

Minjie Wang's avatar
Minjie Wang committed
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
            # find_edges
            u, v = g.find_edges(list(range(n_edges)), etype)
            assert F.asnumpy(u).tolist() == srcs
            assert F.asnumpy(v).tolist() == dsts

            # all_edges.
            for order in ['eid']:
                u, v, e = g.all_edges('all', order, etype)
                assert F.asnumpy(u).tolist() == srcs
                assert F.asnumpy(v).tolist() == dsts
                assert F.asnumpy(e).tolist() == list(range(n_edges))

            # in_degrees & out_degrees
            in_degrees = F.asnumpy(g.in_degrees(etype=etype))
            out_degrees = F.asnumpy(g.out_degrees(etype=etype))
            src_count = Counter(srcs)
            dst_count = Counter(dsts)
            utype, _, vtype = g.to_canonical_etype(etype)
            for i in range(g.number_of_nodes(utype)):
                assert out_degrees[i] == src_count[i]
            for i in range(g.number_of_nodes(vtype)):
                assert in_degrees[i] == dst_count[i]

    edges = {
        'follows': ([0, 1], [1, 2]),
        'plays': ([0, 1, 2, 1], [0, 0, 1, 1]),
        'wishes': ([0, 2], [1, 0]),
        'develops': ([0, 1], [0, 1]),
    }
    # edges that does not exist in the graph
    negative_edges = {
        'follows': ([0, 1], [0, 1]),
        'plays': ([0, 2], [1, 0]),
        'wishes': ([0, 1], [0, 1]),
        'develops': ([0, 1], [1, 0]),
    }
    g = create_test_heterograph()
    _test(g)
    g = create_test_heterograph1()
    _test(g)

    etypes = canonical_etypes
    edges = {
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([0, 1, 2, 1], [0, 0, 1, 1]),
        ('user', 'wishes', 'game'): ([0, 2], [1, 0]),
        ('developer', 'develops', 'game'): ([0, 1], [0, 1]),
    }
    # edges that does not exist in the graph
    negative_edges = {
        ('user', 'follows', 'user'): ([0, 1], [0, 1]),
        ('user', 'plays', 'game'): ([0, 2], [1, 0]),
        ('user', 'wishes', 'game'): ([0, 1], [0, 1]),
        ('developer', 'develops', 'game'): ([0, 1], [1, 0]),
        }
    g = create_test_heterograph()
    _test(g)
    g = create_test_heterograph1()
    _test(g)

    # test repr
    print(g)

def test_adj():
    g = create_test_heterograph()
    adj = F.sparse_to_numpy(g.adj(etype='follows'))
    assert np.allclose(
            adj,
            np.array([[0., 0., 0.],
                      [1., 0., 0.],
                      [0., 1., 0.]]))
    adj = F.sparse_to_numpy(g.adj(transpose=True, etype='follows'))
    assert np.allclose(
            adj,
            np.array([[0., 1., 0.],
                      [0., 0., 1.],
                      [0., 0., 0.]]))
    adj = F.sparse_to_numpy(g.adj(etype='plays'))
    assert np.allclose(
            adj,
            np.array([[1., 1., 0.],
                      [0., 1., 1.]]))
    adj = F.sparse_to_numpy(g.adj(transpose=True, etype='plays'))
    assert np.allclose(
            adj,
            np.array([[1., 0.],
                      [1., 1.],
                      [0., 1.]]))

    adj = g.adj(scipy_fmt='csr', etype='follows')
    assert np.allclose(
            adj.todense(),
            np.array([[0., 0., 0.],
                      [1., 0., 0.],
                      [0., 1., 0.]]))
    adj = g.adj(scipy_fmt='coo', etype='follows')
    assert np.allclose(
            adj.todense(),
            np.array([[0., 0., 0.],
                      [1., 0., 0.],
                      [0., 1., 0.]]))
    adj = g.adj(scipy_fmt='csr', etype='plays')
    assert np.allclose(
            adj.todense(),
            np.array([[1., 1., 0.],
                      [0., 1., 1.]]))
    adj = g.adj(scipy_fmt='coo', etype='plays')
    assert np.allclose(
            adj.todense(),
            np.array([[1., 1., 0.],
                      [0., 1., 1.]]))
    adj = F.sparse_to_numpy(g['follows'].adj())
    assert np.allclose(
            adj,
            np.array([[0., 0., 0.],
                      [1., 0., 0.],
                      [0., 1., 0.]]))

def test_inc():
    g = create_test_heterograph()
    #follows_g = dgl.graph([(0, 1), (1, 2)], 'user', 'follows')
    adj = F.sparse_to_numpy(g['follows'].inc('in'))
    assert np.allclose(
            adj,
            np.array([[0., 0.],
                      [1., 0.],
                      [0., 1.]]))
    adj = F.sparse_to_numpy(g['follows'].inc('out'))
    assert np.allclose(
            adj,
            np.array([[1., 0.],
                      [0., 1.],
                      [0., 0.]]))
    adj = F.sparse_to_numpy(g['follows'].inc('both'))
    assert np.allclose(
            adj,
            np.array([[-1., 0.],
                      [1., -1.],
                      [0., 1.]]))
    adj = F.sparse_to_numpy(g.inc('in', etype='plays'))
    assert np.allclose(
            adj,
            np.array([[1., 1., 0., 0.],
                      [0., 0., 1., 1.]]))
    adj = F.sparse_to_numpy(g.inc('out', etype='plays'))
    assert np.allclose(
            adj,
            np.array([[1., 0., 0., 0.],
                      [0., 1., 0., 1.],
                      [0., 0., 1., 0.]]))
    adj = F.sparse_to_numpy(g.inc('both', etype='follows'))
    assert np.allclose(
            adj,
            np.array([[-1., 0.],
                      [1., -1.],
                      [0., 1.]]))
    
def test_view():
    # test data view
374
375
376
    g = create_test_heterograph()

    f1 = F.randn((3, 6))
Minjie Wang's avatar
Minjie Wang committed
377
378
    g.nodes['user'].data['h'] = f1       # ok
    f2 = g.nodes['user'].data['h']
379
    assert F.array_equal(f1, f2)
Minjie Wang's avatar
Minjie Wang committed
380
    assert F.array_equal(F.tensor(g.nodes('user')), F.arange(0, 3))
381
382

    f3 = F.randn((2, 4))
Minjie Wang's avatar
Minjie Wang committed
383
384
385
    g.edges['user', 'follows', 'user'].data['h'] = f3
    f4 = g.edges['user', 'follows', 'user'].data['h']
    f5 = g.edges['follows'].data['h']
386
    assert F.array_equal(f3, f4)
Minjie Wang's avatar
Minjie Wang committed
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
    assert F.array_equal(f3, f5)
    assert F.array_equal(F.tensor(g.edges(etype='follows', form='eid')), F.arange(0, 2))

def test_view1():
    # test relation view
    HG = create_test_heterograph()
    ntypes = ['user', 'game', 'developer']
    canonical_etypes = [
        ('user', 'follows', 'user'),
        ('user', 'plays', 'game'),
        ('user', 'wishes', 'game'),
        ('developer', 'develops', 'game')]
    etypes = ['follows', 'plays', 'wishes', 'develops']

    def _test_query():
        for etype in etypes:
            utype, _, vtype = HG.to_canonical_etype(etype)
            g = HG[etype]
            srcs, dsts = edges[etype]
            for src, dst in zip(srcs, dsts):
                assert g.has_edge_between(src, dst)
            assert F.asnumpy(g.has_edges_between(srcs, dsts)).all()

            srcs, dsts = negative_edges[etype]
            for src, dst in zip(srcs, dsts):
                assert not g.has_edge_between(src, dst)
            assert not F.asnumpy(g.has_edges_between(srcs, dsts)).any()

            srcs, dsts = edges[etype]
            n_edges = len(srcs)

            # predecessors & in_edges & in_degree
            pred = [s for s, d in zip(srcs, dsts) if d == 0]
            assert set(F.asnumpy(g.predecessors(0)).tolist()) == set(pred)
            u, v = g.in_edges([0])
            assert F.asnumpy(v).tolist() == [0] * len(pred)
            assert set(F.asnumpy(u).tolist()) == set(pred)
            assert g.in_degree(0) == len(pred)

            # successors & out_edges & out_degree
            succ = [d for s, d in zip(srcs, dsts) if s == 0]
            assert set(F.asnumpy(g.successors(0)).tolist()) == set(succ)
            u, v = g.out_edges([0])
            assert F.asnumpy(u).tolist() == [0] * len(succ)
            assert set(F.asnumpy(v).tolist()) == set(succ)
            assert g.out_degree(0) == len(succ)

            # edge_id & edge_ids
            for i, (src, dst) in enumerate(zip(srcs, dsts)):
                assert g.edge_id(src, dst) == i
                assert F.asnumpy(g.edge_id(src, dst, force_multi=True)).tolist() == [i]
            assert F.asnumpy(g.edge_ids(srcs, dsts)).tolist() == list(range(n_edges))
            u, v, e = g.edge_ids(srcs, dsts, force_multi=True)
            assert F.asnumpy(u).tolist() == srcs
            assert F.asnumpy(v).tolist() == dsts
            assert F.asnumpy(e).tolist() == list(range(n_edges))

            # find_edges
            u, v = g.find_edges(list(range(n_edges)))
            assert F.asnumpy(u).tolist() == srcs
            assert F.asnumpy(v).tolist() == dsts

            # all_edges.
            for order in ['eid']:
                u, v, e = g.all_edges(form='all', order=order)
                assert F.asnumpy(u).tolist() == srcs
                assert F.asnumpy(v).tolist() == dsts
                assert F.asnumpy(e).tolist() == list(range(n_edges))

            # in_degrees & out_degrees
            in_degrees = F.asnumpy(g.in_degrees())
            out_degrees = F.asnumpy(g.out_degrees())
            src_count = Counter(srcs)
            dst_count = Counter(dsts)
            for i in range(g.number_of_nodes(utype)):
                assert out_degrees[i] == src_count[i]
            for i in range(g.number_of_nodes(vtype)):
                assert in_degrees[i] == dst_count[i]   

    edges = {
        'follows': ([0, 1], [1, 2]),
        'plays': ([0, 1, 2, 1], [0, 0, 1, 1]),
        'wishes': ([0, 2], [1, 0]),
        'develops': ([0, 1], [0, 1]),
    }
    # edges that does not exist in the graph
    negative_edges = {
        'follows': ([0, 1], [0, 1]),
        'plays': ([0, 2], [1, 0]),
        'wishes': ([0, 1], [0, 1]),
        'develops': ([0, 1], [1, 0]),
    }
    _test_query()
    etypes = canonical_etypes
    edges = {
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([0, 1, 2, 1], [0, 0, 1, 1]),
        ('user', 'wishes', 'game'): ([0, 2], [1, 0]),
        ('developer', 'develops', 'game'): ([0, 1], [0, 1]),
    }
    # edges that does not exist in the graph
    negative_edges = {
        ('user', 'follows', 'user'): ([0, 1], [0, 1]),
        ('user', 'plays', 'game'): ([0, 2], [1, 0]),
        ('user', 'wishes', 'game'): ([0, 1], [0, 1]),
        ('developer', 'develops', 'game'): ([0, 1], [1, 0]),
        }
    _test_query()

    # test features
    HG.nodes['user'].data['h'] = F.ones((HG.number_of_nodes('user'), 5))
    HG.nodes['game'].data['m'] = F.ones((HG.number_of_nodes('game'), 3)) * 2

    # test only one node type
    g = HG['follows']
    assert g.number_of_nodes() == 3

    # test ndata and edata
    f1 = F.randn((3, 6))
    g.ndata['h'] = f1       # ok
    f2 = HG.nodes['user'].data['h']
    assert F.array_equal(f1, f2)
    assert F.array_equal(F.tensor(g.nodes()), F.arange(0, 3))

    f3 = F.randn((2, 4))
    g.edata['h'] = f3
    f4 = HG.edges['follows'].data['h']
    assert F.array_equal(f3, f4)
    assert F.array_equal(F.tensor(g.edges(form='eid')), F.arange(0, 2))

    # test fail case
    # fail due to multiple types
    fail = False
    try:
        HG.ndata['h']
    except dgl.DGLError:
        fail = True
    assert fail

    fail = False
    try:
        HG.edata['h']
    except dgl.DGLError:
        fail = True
    assert fail

def test_flatten():
    def check_mapping(g, fg):
        if len(fg.ntypes) == 1:
            SRC = DST = fg.ntypes[0]
        else:
            SRC = fg.ntypes[0]
            DST = fg.ntypes[1]

        etypes = F.asnumpy(fg.edata[dgl.ETYPE]).tolist()
        eids = F.asnumpy(fg.edata[dgl.EID]).tolist()

        for i, (etype, eid) in enumerate(zip(etypes, eids)):
            src_g, dst_g = g.find_edges([eid], g.canonical_etypes[etype])
            src_fg, dst_fg = fg.find_edges([i])
            # TODO(gq): I feel this code is quite redundant; can we just add new members (like
            # "induced_srcid") to returned heterograph object and not store them as features?
VoVAllen's avatar
VoVAllen committed
549
550
            assert src_g == F.gather_row(fg.nodes[SRC].data[dgl.NID], src_fg)[0]
            tid = F.asnumpy(F.gather_row(fg.nodes[SRC].data[dgl.NTYPE], src_fg)).item()
Minjie Wang's avatar
Minjie Wang committed
551
            assert g.canonical_etypes[etype][0] == g.ntypes[tid]
VoVAllen's avatar
VoVAllen committed
552
553
            assert dst_g == F.gather_row(fg.nodes[DST].data[dgl.NID], dst_fg)[0]
            tid = F.asnumpy(F.gather_row(fg.nodes[DST].data[dgl.NTYPE], dst_fg)).item()
Minjie Wang's avatar
Minjie Wang committed
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
            assert g.canonical_etypes[etype][2] == g.ntypes[tid]

    # check for wildcard slices
    g = create_test_heterograph()
    g.nodes['user'].data['h'] = F.ones((3, 5))
    g.nodes['game'].data['i'] = F.ones((2, 5))
    g.edges['plays'].data['e'] = F.ones((4, 4))
    g.edges['wishes'].data['e'] = F.ones((2, 4))
    g.edges['wishes'].data['f'] = F.ones((2, 4))

    fg = g['user', :, 'game']   # user--plays->game and user--wishes->game
    assert len(fg.ntypes) == 2
    assert fg.ntypes == ['user', 'game']
    assert fg.etypes == ['plays+wishes']

    assert F.array_equal(fg.nodes['user'].data['h'], F.ones((3, 5)))
    assert F.array_equal(fg.nodes['game'].data['i'], F.ones((2, 5)))
    assert F.array_equal(fg.edata['e'], F.ones((6, 4)))
    assert 'f' not in fg.edata

    etypes = F.asnumpy(fg.edata[dgl.ETYPE]).tolist()
    eids = F.asnumpy(fg.edata[dgl.EID]).tolist()
    assert set(zip(etypes, eids)) == set([(1, 0), (1, 1), (1, 2), (1, 3), (2, 0), (2, 1)])

    check_mapping(g, fg)

    fg = g['user', :, 'user']
    # NOTE(gq): The node/edge types from the parent graph is returned if there is only one
    # node/edge type.  This differs from the behavior above.
    assert fg.ntypes == ['user']
    assert fg.etypes == ['follows']
    u1, v1 = g.edges(etype='follows', order='eid')
    u2, v2 = fg.edges(etype='follows', order='eid')
    assert F.array_equal(u1, u2)
    assert F.array_equal(v1, v2)

    fg = g['developer', :, 'game']
    assert fg.ntypes == ['developer', 'game']
    assert fg.etypes == ['develops']
    u1, v1 = g.edges(etype='develops', order='eid')
    u2, v2 = fg.edges(etype='develops', order='eid')
    assert F.array_equal(u1, u2)
    assert F.array_equal(v1, v2)

    fg = g[:, :, :]
    assert fg.ntypes == ['developer+user', 'game+user']
    assert fg.etypes == ['develops+follows+plays+wishes']
    check_mapping(g, fg)

    # Test another heterograph
    g_x = dgl.graph(([0, 1, 2], [1, 2, 3]), 'user', 'follows')
    g_y = dgl.graph(([0, 2], [2, 3]), 'user', 'knows')
    g_x.nodes['user'].data['h'] = F.randn((4, 3))
    g_x.edges['follows'].data['w'] = F.randn((3, 2))
    g_y.nodes['user'].data['hh'] = F.randn((4, 5))
    g_y.edges['knows'].data['ww'] = F.randn((2, 10))
    g = dgl.hetero_from_relations([g_x, g_y])

    assert F.array_equal(g.ndata['h'], g_x.ndata['h'])
    assert F.array_equal(g.ndata['hh'], g_y.ndata['hh'])
    assert F.array_equal(g.edges['follows'].data['w'], g_x.edata['w'])
    assert F.array_equal(g.edges['knows'].data['ww'], g_y.edata['ww'])

    fg = g['user', :, 'user']
    assert fg.ntypes == ['user']
    assert fg.etypes == ['follows+knows']
    check_mapping(g, fg)

    fg = g['user', :, :]
    assert fg.ntypes == ['user']
    assert fg.etypes == ['follows+knows']
    check_mapping(g, fg)

627
628
629
630
631
632
def test_to_device():
    hg = create_test_heterograph()
    if F.is_cuda_available():
        hg = hg.to(F.cuda())
        assert hg is not None

633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
def test_convert_bound():
    def _test_bipartite_bound(data, card):
        try:
            dgl.bipartite(data, card=card)
        except dgl.DGLError:
            return
        assert False, 'bipartite bound test with wrong uid failed'

    def _test_graph_bound(data, card):
        try:
            dgl.graph(data, card=card)
        except dgl.DGLError:
            return
        assert False, 'graph bound test with wrong uid failed'

    _test_bipartite_bound(([1,2],[1,2]),(2,3))
    _test_bipartite_bound(([0,1],[1,4]),(2,3))
    _test_graph_bound(([1,3],[1,2]), 3)
    _test_graph_bound(([0,1],[1,3]),3)


Minjie Wang's avatar
Minjie Wang committed
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
def test_convert():
    hg = create_test_heterograph()
    hs = []
    for ntype in hg.ntypes:
        h = F.randn((hg.number_of_nodes(ntype), 5))
        hg.nodes[ntype].data['h'] = h
        hs.append(h)
    hg.nodes['user'].data['x'] = F.randn((3, 3))
    ws = []
    for etype in hg.canonical_etypes:
        w = F.randn((hg.number_of_edges(etype), 5))
        hg.edges[etype].data['w'] = w
        ws.append(w)
    hg.edges['plays'].data['x'] = F.randn((4, 3))

    g = dgl.to_homo(hg)
    assert F.array_equal(F.cat(hs, dim=0), g.ndata['h'])
    assert 'x' not in g.ndata
    assert F.array_equal(F.cat(ws, dim=0), g.edata['w'])
    assert 'x' not in g.edata

    src, dst = g.all_edges(order='eid')
    src = F.asnumpy(src)
    dst = F.asnumpy(dst)
    etype_id, eid = F.asnumpy(g.edata[dgl.ETYPE]), F.asnumpy(g.edata[dgl.EID])
    ntype_id, nid = F.asnumpy(g.ndata[dgl.NTYPE]), F.asnumpy(g.ndata[dgl.NID])
    for i in range(g.number_of_edges()):
        srctype = hg.ntypes[ntype_id[src[i]]]
        dsttype = hg.ntypes[ntype_id[dst[i]]]
        etype = hg.etypes[etype_id[i]]
        src_i, dst_i = hg.find_edges([eid[i]], (srctype, etype, dsttype))
        assert np.asscalar(F.asnumpy(src_i)) == nid[src[i]]
        assert np.asscalar(F.asnumpy(dst_i)) == nid[dst[i]]

    mg = nx.MultiDiGraph([
        ('user', 'user', 'follows'),
        ('user', 'game', 'plays'),
        ('user', 'game', 'wishes'),
        ('developer', 'game', 'develops')])

    for _mg in [None, mg]:
        hg2 = dgl.to_hetero(
                g, ['user', 'game', 'developer'], ['follows', 'plays', 'wishes', 'develops'],
                ntype_field=dgl.NTYPE, etype_field=dgl.ETYPE, metagraph=_mg)
        assert set(hg.ntypes) == set(hg2.ntypes)
        assert set(hg.canonical_etypes) == set(hg2.canonical_etypes)
        for ntype in hg.ntypes:
            assert hg.number_of_nodes(ntype) == hg2.number_of_nodes(ntype)
            assert F.array_equal(hg.nodes[ntype].data['h'], hg2.nodes[ntype].data['h'])
        for canonical_etype in hg.canonical_etypes:
            src, dst = hg.all_edges(etype=canonical_etype, order='eid')
            src2, dst2 = hg2.all_edges(etype=canonical_etype, order='eid')
            assert F.array_equal(src, src2)
            assert F.array_equal(dst, dst2)
            assert F.array_equal(hg.edges[canonical_etype].data['w'], hg2.edges[canonical_etype].data['w'])

    # hetero_from_homo test case 2
    g = dgl.graph([(0, 2), (1, 2), (2, 3), (0, 3)])
    g.ndata[dgl.NTYPE] = F.tensor([0, 0, 1, 2])
    g.edata[dgl.ETYPE] = F.tensor([0, 0, 1, 2])
    hg = dgl.to_hetero(g, ['l0', 'l1', 'l2'], ['e0', 'e1', 'e2'])
    assert set(hg.canonical_etypes) == set(
        [('l0', 'e0', 'l1'), ('l1', 'e1', 'l2'), ('l0', 'e2', 'l2')])
    assert hg.number_of_nodes('l0') == 2
    assert hg.number_of_nodes('l1') == 1
    assert hg.number_of_nodes('l2') == 1
    assert hg.number_of_edges('e0') == 2
    assert hg.number_of_edges('e1') == 1
    assert hg.number_of_edges('e2') == 1

    # hetero_from_homo test case 3
    mg = nx.MultiDiGraph([
        ('user', 'movie', 'watches'),
        ('user', 'TV', 'watches')])
    g = dgl.graph([(0, 1), (0, 2)])
    g.ndata[dgl.NTYPE] = F.tensor([0, 1, 2])
    g.edata[dgl.ETYPE] = F.tensor([0, 0])
    for _mg in [None, mg]:
        hg = dgl.to_hetero(g, ['user', 'TV', 'movie'], ['watches'], metagraph=_mg)
        assert set(hg.canonical_etypes) == set(
            [('user', 'watches', 'movie'), ('user', 'watches', 'TV')])
        assert hg.number_of_nodes('user') == 1
        assert hg.number_of_nodes('TV') == 1
        assert hg.number_of_nodes('movie') == 1
        assert hg.number_of_edges(('user', 'watches', 'TV')) == 1
        assert hg.number_of_edges(('user', 'watches', 'movie')) == 1
        assert len(hg.etypes) == 2

742
743
744
745
746
    # hetero_to_homo test case 2
    hg = dgl.bipartite([(0, 0), (1, 1)], card=(2, 3))
    g = dgl.to_homo(hg)
    assert g.number_of_nodes() == 5

Mufei Li's avatar
Mufei Li committed
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
def test_transform():
    g = create_test_heterograph()
    x = F.randn((3, 5))
    g.nodes['user'].data['h'] = x

    new_g = dgl.metapath_reachable_graph(g, ['follows', 'plays'])

    assert new_g.ntypes == ['user', 'game']
    assert new_g.number_of_edges() == 3
    assert F.asnumpy(new_g.has_edges_between([0, 0, 1], [0, 1, 1])).all()

    new_g = dgl.metapath_reachable_graph(g, ['follows'])

    assert new_g.ntypes == ['user']
    assert new_g.number_of_edges() == 2
    assert F.asnumpy(new_g.has_edges_between([0, 1], [1, 2])).all()

Minjie Wang's avatar
Minjie Wang committed
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
def test_subgraph():
    g = create_test_heterograph()
    x = F.randn((3, 5))
    y = F.randn((2, 4))
    g.nodes['user'].data['h'] = x
    g.edges['follows'].data['h'] = y

    def _check_subgraph(g, sg):
        assert sg.ntypes == ['user', 'game', 'developer']
        assert sg.etypes == ['follows', 'plays', 'wishes', 'develops']
        assert F.array_equal(F.tensor(sg.nodes['user'].data[dgl.NID]),
                             F.tensor([1, 2], F.int64))
        assert F.array_equal(F.tensor(sg.nodes['game'].data[dgl.NID]),
                             F.tensor([0], F.int64))
        assert F.array_equal(F.tensor(sg.edges['follows'].data[dgl.EID]),
                             F.tensor([1], F.int64))
        assert F.array_equal(F.tensor(sg.edges['plays'].data[dgl.EID]),
                             F.tensor([1], F.int64))
        assert F.array_equal(F.tensor(sg.edges['wishes'].data[dgl.EID]),
                             F.tensor([1], F.int64))
        assert sg.number_of_nodes('developer') == 0
        assert sg.number_of_edges('develops') == 0
        assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'][1:3])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'][1:2])

    sg1 = g.subgraph({'user': [1, 2], 'game': [0]})
    _check_subgraph(g, sg1)
    sg2 = g.edge_subgraph({'follows': [1], 'plays': [1], 'wishes': [1]})
    _check_subgraph(g, sg2)

794
    def _check_typed_subgraph1(g, sg):
Minjie Wang's avatar
Minjie Wang committed
795
796
797
798
799
800
801
802
803
804
805
        assert set(sg.ntypes) == {'user', 'game'}
        assert set(sg.etypes) == {'follows', 'plays', 'wishes'}
        for ntype in sg.ntypes:
            assert sg.number_of_nodes(ntype) == g.number_of_nodes(ntype)
        for etype in sg.etypes:
            src_sg, dst_sg = sg.all_edges(etype=etype, order='eid')
            src_g, dst_g = g.all_edges(etype=etype, order='eid')
            assert F.array_equal(src_sg, src_g)
            assert F.array_equal(dst_sg, dst_g)
        assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'])
VoVAllen's avatar
VoVAllen committed
806
807
        g.nodes['user'].data['h'] = F.scatter_row(g.nodes['user'].data['h'], F.tensor([2]), F.randn((1, 5)))
        g.edges['follows'].data['h'] = F.scatter_row(g.edges['follows'].data['h'], F.tensor([1]), F.randn((1, 4)))
Minjie Wang's avatar
Minjie Wang committed
808
809
810
        assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'])

811
812
813
814
815
816
817
818
819
820
821
    def _check_typed_subgraph2(g, sg):
        assert set(sg.ntypes) == {'developer', 'game'}
        assert set(sg.etypes) == {'develops'}
        for ntype in sg.ntypes:
            assert sg.number_of_nodes(ntype) == g.number_of_nodes(ntype)
        for etype in sg.etypes:
            src_sg, dst_sg = sg.all_edges(etype=etype, order='eid')
            src_g, dst_g = g.all_edges(etype=etype, order='eid')
            assert F.array_equal(src_sg, src_g)
            assert F.array_equal(dst_sg, dst_g)

Minjie Wang's avatar
Minjie Wang committed
822
    sg3 = g.node_type_subgraph(['user', 'game'])
823
824
825
826
827
    _check_typed_subgraph1(g, sg3)
    sg4 = g.edge_type_subgraph(['develops'])
    _check_typed_subgraph2(g, sg4)
    sg5 = g.edge_type_subgraph(['follows', 'plays', 'wishes'])
    _check_typed_subgraph1(g, sg5)
828
829
830
831
832
833
834
835

def test_apply():
    def node_udf(nodes):
        return {'h': nodes.data['h'] * 2}
    def edge_udf(edges):
        return {'h': edges.data['h'] * 2 + edges.src['h']}

    g = create_test_heterograph()
Minjie Wang's avatar
Minjie Wang committed
836
837
838
839
840
841
842
843
844
845
846
    g.nodes['user'].data['h'] = F.ones((3, 5))
    g.apply_nodes(node_udf, ntype='user')
    assert F.array_equal(g.nodes['user'].data['h'], F.ones((3, 5)) * 2)

    g['plays'].edata['h'] = F.ones((4, 5))
    g.apply_edges(edge_udf, etype=('user', 'plays', 'game'))
    assert F.array_equal(g['plays'].edata['h'], F.ones((4, 5)) * 4)

    # test apply on graph with only one type
    g['follows'].apply_nodes(node_udf)
    assert F.array_equal(g.nodes['user'].data['h'], F.ones((3, 5)) * 4)
847

Minjie Wang's avatar
Minjie Wang committed
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
    g['plays'].apply_edges(edge_udf)
    assert F.array_equal(g['plays'].edata['h'], F.ones((4, 5)) * 12)

    # test fail case
    # fail due to multiple types
    fail = False
    try:
        g.apply_nodes(node_udf)
    except dgl.DGLError:
        fail = True
    assert fail

    fail = False
    try:
        g.apply_edges(edge_udf)
    except dgl.DGLError:
        fail = True
    assert fail

def test_level1():
    #edges = {
    #    'follows': ([0, 1], [1, 2]),
    #    'plays': ([0, 1, 2, 1], [0, 0, 1, 1]),
    #    'wishes': ([0, 2], [1, 0]),
    #    'develops': ([0, 1], [0, 1]),
    #}
    g = create_test_heterograph()
    def rfunc(nodes):
        return {'y': F.sum(nodes.mailbox['m'], 1)}
    def rfunc2(nodes):
        return {'y': F.max(nodes.mailbox['m'], 1)}
    def mfunc(edges):
        return {'m': edges.src['h']}
    def afunc(nodes):
        return {'y' : nodes.data['y'] + 1}
    g.nodes['user'].data['h'] = F.ones((3, 2))
    g.send([2, 3], mfunc, etype='plays')
    g.recv([0, 1], rfunc, etype='plays')
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[0., 0.], [2., 2.]]))
    g.nodes['game'].data.pop('y')

    # only one type
    play_g = g['plays']
    play_g.send([2, 3], mfunc)
    play_g.recv([0, 1], rfunc)
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[0., 0.], [2., 2.]]))
    # TODO(minjie): following codes will fail because messages are
    #   not shared with the base graph. However, since send and recv
    #   are rarely used, no fix at the moment.
    # g['plays'].send([2, 3], mfunc)
    # g['plays'].recv([0, 1], mfunc)

    # test fail case
    # fail due to multiple types
    fail = False
    try:
        g.send([2, 3], mfunc)
    except dgl.DGLError:
        fail = True
    assert fail

    fail = False
    try:
        g.recv([0, 1], rfunc)
    except dgl.DGLError:
        fail = True
    assert fail

    # test multi recv
    g.send(g.edges(etype='plays'), mfunc, etype='plays')
    g.send(g.edges(etype='wishes'), mfunc, etype='wishes')
    g.multi_recv([0, 1], {'plays' : rfunc, ('user', 'wishes', 'game'): rfunc2}, 'sum')
    assert F.array_equal(g.nodes['game'].data['y'], F.tensor([[3., 3.], [3., 3.]]))

    # test multi recv with apply function
    g.send(g.edges(etype='plays'), mfunc, etype='plays')
    g.send(g.edges(etype='wishes'), mfunc, etype='wishes')
    g.multi_recv([0, 1], {'plays' : (rfunc, afunc), ('user', 'wishes', 'game'): rfunc2}, 'sum', afunc)
    assert F.array_equal(g.nodes['game'].data['y'], F.tensor([[5., 5.], [5., 5.]]))

    # test cross reducer
    g.nodes['user'].data['h'] = F.randn((3, 2))
    for cred in ['sum', 'max', 'min', 'mean']:
        g.send(g.edges(etype='plays'), mfunc, etype='plays')
        g.send(g.edges(etype='wishes'), mfunc, etype='wishes')
        g.multi_recv([0, 1], {'plays' : (rfunc, afunc), 'wishes': rfunc2}, cred, afunc)
        y = g.nodes['game'].data['y']
        g1 = g['plays']
        g2 = g['wishes']
        g1.send(g1.edges(), mfunc)
        g1.recv(g1.nodes('game'), rfunc, afunc)
        y1 = g.nodes['game'].data['y']
        g2.send(g2.edges(), mfunc)
        g2.recv(g2.nodes('game'), rfunc2)
        y2 = g.nodes['game'].data['y']
        yy = get_redfn(cred)(F.stack([y1, y2], 0), 0)
        yy = yy + 1  # final afunc
        assert F.array_equal(y, yy)

    # test fail case
    # fail because cannot infer ntype
    fail = False
    try:
        g.multi_recv([0, 1], {'plays' : rfunc, 'follows': rfunc2}, 'sum')
    except dgl.DGLError:
        fail = True
    assert fail

VoVAllen's avatar
VoVAllen committed
958

Minjie Wang's avatar
Minjie Wang committed
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
def test_level2():
    #edges = {
    #    'follows': ([0, 1], [1, 2]),
    #    'plays': ([0, 1, 2, 1], [0, 0, 1, 1]),
    #    'wishes': ([0, 2], [1, 0]),
    #    'develops': ([0, 1], [0, 1]),
    #}
    g = create_test_heterograph()
    def rfunc(nodes):
        return {'y': F.sum(nodes.mailbox['m'], 1)}
    def rfunc2(nodes):
        return {'y': F.max(nodes.mailbox['m'], 1)}
    def mfunc(edges):
        return {'m': edges.src['h']}
    def afunc(nodes):
        return {'y' : nodes.data['y'] + 1}

    #############################################################
    #  send_and_recv
    #############################################################

    g.nodes['user'].data['h'] = F.ones((3, 2))
    g.send_and_recv([2, 3], mfunc, rfunc, etype='plays')
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[0., 0.], [2., 2.]]))

    # only one type
    g['plays'].send_and_recv([2, 3], mfunc, rfunc)
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[0., 0.], [2., 2.]]))
    
    # test fail case
    # fail due to multiple types
    fail = False
    try:
        g.send_and_recv([2, 3], mfunc, rfunc)
    except dgl.DGLError:
        fail = True
    assert fail

    # test multi
    g.multi_send_and_recv(
        {'plays' : (g.edges(etype='plays'), mfunc, rfunc),
         ('user', 'wishes', 'game'): (g.edges(etype='wishes'), mfunc, rfunc2)},
        'sum')
    assert F.array_equal(g.nodes['game'].data['y'], F.tensor([[3., 3.], [3., 3.]]))

    # test multi
    g.multi_send_and_recv(
        {'plays' : (g.edges(etype='plays'), mfunc, rfunc, afunc),
         ('user', 'wishes', 'game'): (g.edges(etype='wishes'), mfunc, rfunc2)},
        'sum', afunc)
    assert F.array_equal(g.nodes['game'].data['y'], F.tensor([[5., 5.], [5., 5.]]))

    # test cross reducer
    g.nodes['user'].data['h'] = F.randn((3, 2))
    for cred in ['sum', 'max', 'min', 'mean']:
        g.multi_send_and_recv(
            {'plays' : (g.edges(etype='plays'), mfunc, rfunc, afunc),
             'wishes': (g.edges(etype='wishes'), mfunc, rfunc2)},
            cred, afunc)
        y = g.nodes['game'].data['y']
        g['plays'].send_and_recv(g.edges(etype='plays'), mfunc, rfunc, afunc)
        y1 = g.nodes['game'].data['y']
        g['wishes'].send_and_recv(g.edges(etype='wishes'), mfunc, rfunc2)
        y2 = g.nodes['game'].data['y']
        yy = get_redfn(cred)(F.stack([y1, y2], 0), 0)
        yy = yy + 1  # final afunc
        assert F.array_equal(y, yy)

    # test fail case
    # fail because cannot infer ntype
    fail = False
    try:
        g.multi_send_and_recv(
            {'plays' : (g.edges(etype='plays'), mfunc, rfunc),
             'follows': (g.edges(etype='follows'), mfunc, rfunc2)},
            'sum')
    except dgl.DGLError:
        fail = True
    assert fail

    g.nodes['game'].data.clear()

    #############################################################
    #  pull
    #############################################################

    g.nodes['user'].data['h'] = F.ones((3, 2))
    g.pull(1, mfunc, rfunc, etype='plays')
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[0., 0.], [2., 2.]]))

    # only one type
    g['plays'].pull(1, mfunc, rfunc)
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[0., 0.], [2., 2.]]))

    # test fail case
    fail = False
    try:
        g.pull(1, mfunc, rfunc)
    except dgl.DGLError:
        fail = True
    assert fail

    # test multi
    g.multi_pull(
        1,
        {'plays' : (mfunc, rfunc),
         ('user', 'wishes', 'game'): (mfunc, rfunc2)},
        'sum')
    assert F.array_equal(g.nodes['game'].data['y'], F.tensor([[0., 0.], [3., 3.]]))

    # test multi
    g.multi_pull(
        1,
        {'plays' : (mfunc, rfunc, afunc),
         ('user', 'wishes', 'game'): (mfunc, rfunc2)},
        'sum', afunc)
    assert F.array_equal(g.nodes['game'].data['y'], F.tensor([[0., 0.], [5., 5.]]))

    # test cross reducer
    g.nodes['user'].data['h'] = F.randn((3, 2))
    for cred in ['sum', 'max', 'min', 'mean']:
        g.multi_pull(
            1,
            {'plays' : (mfunc, rfunc, afunc),
             'wishes': (mfunc, rfunc2)},
            cred, afunc)
        y = g.nodes['game'].data['y']
        g['plays'].pull(1, mfunc, rfunc, afunc)
        y1 = g.nodes['game'].data['y']
        g['wishes'].pull(1, mfunc, rfunc2)
        y2 = g.nodes['game'].data['y']
        g.nodes['game'].data['y'] = get_redfn(cred)(F.stack([y1, y2], 0), 0)
        g.apply_nodes(afunc, 1, ntype='game')
        yy = g.nodes['game'].data['y']
        assert F.array_equal(y, yy)

    # test fail case
    # fail because cannot infer ntype
    fail = False
    try:
        g.multi_pull(
            1,
            {'plays' : (mfunc, rfunc),
             'follows': (mfunc, rfunc2)},
            'sum')
    except dgl.DGLError:
        fail = True
    assert fail

    g.nodes['game'].data.clear()

    #############################################################
    #  update_all
    #############################################################

    g.nodes['user'].data['h'] = F.ones((3, 2))
    g.update_all(mfunc, rfunc, etype='plays')
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[2., 2.], [2., 2.]]))

    # only one type
    g['plays'].update_all(mfunc, rfunc)
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[2., 2.], [2., 2.]]))

    # test fail case
    # fail due to multiple types
    fail = False
    try:
        g.update_all(mfunc, rfunc)
    except dgl.DGLError:
        fail = True
    assert fail

    # test multi
    g.multi_update_all(
        {'plays' : (mfunc, rfunc),
         ('user', 'wishes', 'game'): (mfunc, rfunc2)},
        'sum')
    assert F.array_equal(g.nodes['game'].data['y'], F.tensor([[3., 3.], [3., 3.]]))

    # test multi
    g.multi_update_all(
        {'plays' : (mfunc, rfunc, afunc),
         ('user', 'wishes', 'game'): (mfunc, rfunc2)},
        'sum', afunc)
    assert F.array_equal(g.nodes['game'].data['y'], F.tensor([[5., 5.], [5., 5.]]))

    # test cross reducer
    g.nodes['user'].data['h'] = F.randn((3, 2))
    for cred in ['sum', 'max', 'min', 'mean', 'stack']:
        g.multi_update_all(
            {'plays' : (mfunc, rfunc, afunc),
             'wishes': (mfunc, rfunc2)},
            cred, afunc)
        y = g.nodes['game'].data['y']
        g['plays'].update_all(mfunc, rfunc, afunc)
        y1 = g.nodes['game'].data['y']
        g['wishes'].update_all(mfunc, rfunc2)
        y2 = g.nodes['game'].data['y']
        if cred == 'stack':
            # stack has two both correct outcomes
            yy1 = F.stack([F.unsqueeze(y1, 1), F.unsqueeze(y2, 1)], 1)
            yy1 = yy1 + 1  # final afunc
            yy2 = F.stack([F.unsqueeze(y2, 1), F.unsqueeze(y1, 1)], 1)
            yy2 = yy2 + 1  # final afunc
            assert F.array_equal(y, yy1) or F.array_equal(y, yy2)
        else:
            yy = get_redfn(cred)(F.stack([y1, y2], 0), 0)
            yy = yy + 1  # final afunc
            assert F.array_equal(y, yy)

    # test fail case
    # fail because cannot infer ntype
    fail = False
    try:
        g.update_all(
            {'plays' : (mfunc, rfunc),
             'follows': (mfunc, rfunc2)},
            'sum')
    except dgl.DGLError:
        fail = True
    assert fail

    g.nodes['game'].data.clear()
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197

def test_updates():
    def msg_func(edges):
        return {'m': edges.src['h']}
    def reduce_func(nodes):
        return {'y': F.sum(nodes.mailbox['m'], 1)}
    def apply_func(nodes):
        return {'y': nodes.data['y'] * 2}
    g = create_test_heterograph()
    x = F.randn((3, 5))
Minjie Wang's avatar
Minjie Wang committed
1198
    g.nodes['user'].data['h'] = x
1199
1200
1201
1202
1203
1204
1205

    for msg, red, apply in itertools.product(
            [fn.copy_u('h', 'm'), msg_func], [fn.sum('m', 'y'), reduce_func],
            [None, apply_func]):
        multiplier = 1 if apply is None else 2

        g['user', 'plays', 'game'].update_all(msg, red, apply)
Minjie Wang's avatar
Minjie Wang committed
1206
        y = g.nodes['game'].data['y']
1207
1208
        assert F.array_equal(y[0], (x[0] + x[1]) * multiplier)
        assert F.array_equal(y[1], (x[1] + x[2]) * multiplier)
Minjie Wang's avatar
Minjie Wang committed
1209
        del g.nodes['game'].data['y']
1210
1211

        g['user', 'plays', 'game'].send_and_recv(([0, 1, 2], [0, 1, 1]), msg, red, apply)
Minjie Wang's avatar
Minjie Wang committed
1212
        y = g.nodes['game'].data['y']
1213
1214
        assert F.array_equal(y[0], x[0] * multiplier)
        assert F.array_equal(y[1], (x[1] + x[2]) * multiplier)
Minjie Wang's avatar
Minjie Wang committed
1215
        del g.nodes['game'].data['y']
1216

Minjie Wang's avatar
Minjie Wang committed
1217
1218
1219
1220
        plays_g = g['user', 'plays', 'game']
        plays_g.send(([0, 1, 2], [0, 1, 1]), msg)
        plays_g.recv([0, 1], red, apply)
        y = g.nodes['game'].data['y']
1221
1222
        assert F.array_equal(y[0], x[0] * multiplier)
        assert F.array_equal(y[1], (x[1] + x[2]) * multiplier)
Minjie Wang's avatar
Minjie Wang committed
1223
        del g.nodes['game'].data['y']
1224
1225
1226

        # pulls from destination (game) node 0
        g['user', 'plays', 'game'].pull(0, msg, red, apply)
Minjie Wang's avatar
Minjie Wang committed
1227
        y = g.nodes['game'].data['y']
1228
        assert F.array_equal(y[0], (x[0] + x[1]) * multiplier)
Minjie Wang's avatar
Minjie Wang committed
1229
        del g.nodes['game'].data['y']
1230
1231
1232

        # pushes from source (user) node 0
        g['user', 'plays', 'game'].push(0, msg, red, apply)
Minjie Wang's avatar
Minjie Wang committed
1233
        y = g.nodes['game'].data['y']
1234
        assert F.array_equal(y[0], x[0] * multiplier)
Minjie Wang's avatar
Minjie Wang committed
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
        del g.nodes['game'].data['y']

def test_backward():
    g = create_test_heterograph()
    x = F.randn((3, 5))
    F.attach_grad(x)
    g.nodes['user'].data['h'] = x
    with F.record_grad():
        g.multi_update_all(
            {'plays' : (fn.copy_u('h', 'm'), fn.sum('m', 'y')),
             'wishes': (fn.copy_u('h', 'm'), fn.sum('m', 'y'))},
            'sum')
        y = g.nodes['game'].data['y']
        F.backward(y, F.ones(y.shape))
    print(F.grad(x))
    assert F.array_equal(F.grad(x), F.tensor([[2., 2., 2., 2., 2.],
                                              [2., 2., 2., 2., 2.],
                                              [2., 2., 2., 2., 2.]]))
1253

1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
def test_empty_heterograph():
    def assert_empty(g):
        assert g.number_of_nodes('user') == 0
        assert g.number_of_edges('plays') == 0
        assert g.number_of_nodes('game') == 0

    # empty edge list
    assert_empty(dgl.heterograph({('user', 'plays', 'game'): []}))
    # empty src-dst pair
    assert_empty(dgl.heterograph({('user', 'plays', 'game'): ([], [])}))
    # empty sparse matrix
    assert_empty(dgl.heterograph({('user', 'plays', 'game'): ssp.coo_matrix((0, 0))}))
    # empty networkx graph
    assert_empty(dgl.heterograph({('user', 'plays', 'game'): nx.DiGraph()}))

    g = dgl.heterograph({('user', 'follows', 'user'): []})
    assert g.number_of_nodes('user') == 0
    assert g.number_of_edges('follows') == 0

    # empty relation graph with others
    g = dgl.heterograph({('user', 'plays', 'game'): [], ('developer', 'develops', 'game'): [(0, 0), (1, 1)]})
    assert g.number_of_nodes('user') == 0
    assert g.number_of_edges('plays') == 0
    assert g.number_of_nodes('game') == 2
    assert g.number_of_edges('develops') == 2
    assert g.number_of_nodes('developer') == 2

1281
if __name__ == '__main__':
Minjie Wang's avatar
Minjie Wang committed
1282
    test_create()
1283
    test_query()
Minjie Wang's avatar
Minjie Wang committed
1284
1285
1286
1287
1288
    test_adj()
    test_inc()
    test_view()
    test_view1()
    test_flatten()
1289
    test_convert_bound()
Minjie Wang's avatar
Minjie Wang committed
1290
    test_convert()
1291
    test_to_device()
Mufei Li's avatar
Mufei Li committed
1292
    test_transform()
Minjie Wang's avatar
Minjie Wang committed
1293
    test_subgraph()
1294
    test_apply()
Minjie Wang's avatar
Minjie Wang committed
1295
1296
    test_level1()
    test_level2()
1297
    test_updates()
Minjie Wang's avatar
Minjie Wang committed
1298
    test_backward()
1299
    test_empty_heterograph()