main.py 8.23 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import argparse
import os

import dgl
import dgl.nn as dglnn
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn as nn
import torch.nn.functional as F
from argo import ARGO
from dgl.data import (
    AsNodePredDataset,
    FlickrDataset,
    RedditDataset,
    YelpDataset,
)
from dgl.dataloading import DataLoader, NeighborSampler, ShaDowKHopSampler
from ogb.nodeproppred import DglNodePropPredDataset
from torch.nn.parallel import DistributedDataParallel


class GNN(nn.Module):
    def __init__(
        self, in_size, hid_size, out_size, num_layers=3, model_name="sage"
    ):
        super().__init__()
        self.layers = nn.ModuleList()

        # GraphSAGE-mean
        if model_name.lower() == "sage":
            self.layers.append(dglnn.SAGEConv(in_size, hid_size, "mean"))
            for i in range(num_layers - 2):
                self.layers.append(dglnn.SAGEConv(hid_size, hid_size, "mean"))
            self.layers.append(dglnn.SAGEConv(hid_size, out_size, "mean"))
        # GCN
        elif model_name.lower() == "gcn":
            kwargs = {
                "norm": "both",
                "weight": True,
                "bias": True,
                "allow_zero_in_degree": True,
            }
            self.layers.append(dglnn.GraphConv(in_size, hid_size, **kwargs))
            for i in range(num_layers - 2):
                self.layers.append(
                    dglnn.GraphConv(hid_size, hid_size, **kwargs)
                )
            self.layers.append(dglnn.GraphConv(hid_size, out_size, **kwargs))
        else:
            raise NotImplementedError

        self.dropout = nn.Dropout(0.5)
        self.hid_size = hid_size
        self.out_size = out_size

    def forward(self, blocks, x):
        h = x
        if hasattr(blocks, "__len__"):
            for l, (layer, block) in enumerate(zip(self.layers, blocks)):
                h = layer(block, h)
                if l != len(self.layers) - 1:
                    h = F.relu(h)
                    h = self.dropout(h)
        else:
            for l, layer in enumerate(self.layers):
                h = layer(blocks, h)
                if l != len(self.layers) - 1:
                    h = F.relu(h)
                    h = self.dropout(h)
        return h


def _train(**kwargs):
    total_loss = 0
    loader = kwargs["loader"]
    model = kwargs["model"]
    opt = kwargs["opt"]
    load_core = kwargs["load_core"]
    comp_core = kwargs["comp_core"]

    device = torch.device("cpu")
    with loader.enable_cpu_affinity(
        loader_cores=load_core, compute_cores=comp_core
    ):
        for it, (input_nodes, output_nodes, blocks) in enumerate(loader):
            if hasattr(blocks, "__len__"):
                x = blocks[0].srcdata["feat"].to(torch.float32)
                y = blocks[-1].dstdata["label"]
            else:
                x = blocks.srcdata["feat"].to(torch.float32)
                y = blocks.dstdata["label"]
            if kwargs["device"] == "cpu":  # for papers100M
                y = y.type(torch.LongTensor)
                y_hat = model(blocks, x)
            else:
                y = y.type(torch.LongTensor).to(device)
                y_hat = model(blocks, x).to(device)
            try:
                loss = F.cross_entropy(
                    y_hat[: output_nodes.shape[0]], y[: output_nodes.shape[0]]
                )
            except:
                loss = F.binary_cross_entropy_with_logits(
                    y_hat[: output_nodes.shape[0]].float(),
                    y[: output_nodes.shape[0]].float(),
                    reduction="sum",
                )
            opt.zero_grad()
            loss.backward()
            opt.step()
            del input_nodes, output_nodes, blocks
            total_loss += loss.item()
    return total_loss


def train(
    args, g, data, rank, world_size, comp_core, load_core, counter, b_size, ep
):

    num_classes, train_idx = data
    dist.init_process_group("gloo", rank=rank, world_size=world_size)
    device = torch.device("cpu")
    hidden = args.hidden
    # create GraphSAGE model
    in_size = g.ndata["feat"].shape[1]
    model = GNN(
        in_size,
        hidden,
        num_classes,
        num_layers=args.layer,
        model_name=args.model,
    ).to(device)
    model = DistributedDataParallel(model)
    num_of_samplers = len(load_core)
    # create loader
    drop_last, shuffle = True, True
    if args.sampler.lower() == "neighbor":
        sampler = NeighborSampler(
            [int(fanout) for fanout in args.fan_out.split(",")],
            prefetch_node_feats=["feat"],
            prefetch_labels=["label"],
        )
        assert len(sampler.fanouts) == args.layer
    elif args.sampler.lower() == "shadow":
        sampler = ShaDowKHopSampler(
            [10, 5],
            output_device=device,
            prefetch_node_feats=["feat"],
        )
    else:
        raise NotImplementedError

    train_dataloader = DataLoader(
        g,
        train_idx.to(device),
        sampler,
        device=device,
        batch_size=b_size,
        drop_last=drop_last,
        shuffle=shuffle,
        num_workers=num_of_samplers,
        use_ddp=True,
    )

    # training loop
    opt = torch.optim.Adam(model.parameters(), lr=1e-3, weight_decay=5e-4)
    params = {
        # training
        "loader": train_dataloader,
        "model": model,
        "opt": opt,
        # logging
        "rank": rank,
        "train_size": len(train_idx),
        "batch_size": b_size,
        "device": device,
        "process": world_size,
    }

    PATH = "model.pt"
    if counter[0] != 0:
        checkpoint = torch.load(PATH)
        model.load_state_dict(checkpoint["model_state_dict"])
        opt.load_state_dict(checkpoint["optimizer_state_dict"])
        epoch = checkpoint["epoch"]
        loss = checkpoint["loss"]

    for epoch in range(ep):
        params["epoch"] = epoch
        model.train()
        params["load_core"] = load_core
        params["comp_core"] = comp_core
        loss = _train(**params)
        if rank == 0:
            print("loss:", loss)

    dist.barrier()
    EPOCH = counter[0]
    LOSS = loss
    if rank == 0:
        torch.save(
            {
                "epoch": EPOCH,
                "model_state_dict": model.state_dict(),
                "optimizer_state_dict": opt.state_dict(),
                "loss": LOSS,
            },
            PATH,
        )


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--dataset",
        type=str,
        default="ogbn-products",
        choices=[
            "ogbn-papers100M",
            "ogbn-products",
            "reddit",
            "yelp",
            "flickr",
        ],
    )
    parser.add_argument("--batch_size", type=int, default=1024 * 4)
    parser.add_argument("--layer", type=int, default=3)
    parser.add_argument("--fan_out", type=str, default="15,10,5")
    parser.add_argument(
        "--sampler",
        type=str,
        default="neighbor",
        choices=["neighbor", "shadow"],
    )
    parser.add_argument(
        "--model", type=str, default="sage", choices=["sage", "gcn"]
    )
    parser.add_argument("--hidden", type=int, default=128)
    arguments = parser.parse_args()

    os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:512"

    if arguments.dataset in ["reddit", "flickr", "yelp"]:
        if arguments.dataset == "reddit":
            dataset = RedditDataset()
        elif arguments.dataset == "flickr":
            dataset = FlickrDataset()
        else:
            dataset = YelpDataset()
        g = dataset[0]
        train_mask = g.ndata["train_mask"]
        idx = []
        for i in range(len(train_mask)):
            if train_mask[i]:
                idx.append(i)
        dataset.train_idx = torch.tensor(idx)
    else:
        dataset = AsNodePredDataset(DglNodePropPredDataset(arguments.dataset))
        g = dataset[0]

    data = (dataset.num_classes, dataset.train_idx)

    in_size = g.ndata["feat"].shape[1]
    out_size = dataset.num_classes
    hidden_size = int(arguments.hidden)

    os.environ["MASTER_ADDR"] = "127.0.0.1"
    os.environ["MASTER_PORT"] = "29501"
    mp.set_start_method("fork", force=True)
    runtime = ARGO(n_search=10, epoch=20, batch_size=arguments.batch_size)
    runtime.run(train, args=(arguments, g, data))