main.py 4.48 KB
Newer Older
VoVAllen's avatar
VoVAllen committed
1
import argparse
2

VoVAllen's avatar
VoVAllen committed
3
4
5
import torch
import torch.optim as optim
from model import Net
6
from torchvision import datasets, transforms
VoVAllen's avatar
VoVAllen committed
7
8
9
10
11
12
13
14
15
16
17
18


def train(args, model, device, train_loader, optimizer, epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = model.margin_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % args.log_interval == 0:
19
20
21
22
23
24
25
26
27
            print(
                "Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format(
                    epoch,
                    batch_idx * len(data),
                    len(train_loader.dataset),
                    100.0 * batch_idx / len(train_loader),
                    loss.item(),
                )
            )
VoVAllen's avatar
VoVAllen committed
28
29
30
31
32
33
34
35
36
37


def test(args, model, device, test_loader):
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
38
39
40
41
42
43
            test_loss += model.margin_loss(
                output, target
            ).item()  # sum up batch loss
            pred = (
                output.norm(dim=2).squeeze().max(1, keepdim=True)[1]
            )  # get the index of the max log-probability
VoVAllen's avatar
VoVAllen committed
44
45
46
            correct += pred.eq(target.view_as(pred)).sum().item()

    test_loss /= len(test_loader.dataset)
47
48
49
50
51
52
53
54
    print(
        "\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n".format(
            test_loss,
            correct,
            len(test_loader.dataset),
            100.0 * correct / len(test_loader.dataset),
        )
    )
VoVAllen's avatar
VoVAllen committed
55
56
57
58


def main():
    # Training settings
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
    parser = argparse.ArgumentParser(description="PyTorch MNIST Example")
    parser.add_argument(
        "--batch-size",
        type=int,
        default=512,
        metavar="N",
        help="input batch size for training (default: 64)",
    )
    parser.add_argument(
        "--test-batch-size",
        type=int,
        default=512,
        metavar="N",
        help="input batch size for testing (default: 1000)",
    )
    parser.add_argument(
        "--epochs",
        type=int,
        default=10,
        metavar="N",
        help="number of epochs to train (default: 10)",
    )
    parser.add_argument(
        "--lr",
        type=float,
        default=0.01,
        metavar="LR",
        help="learning rate (default: 0.01)",
    )
    parser.add_argument(
        "--no-cuda",
        action="store_true",
        default=False,
        help="disables CUDA training",
    )
    parser.add_argument(
        "--seed",
        type=int,
        default=1,
        metavar="S",
        help="random seed (default: 1)",
    )
    parser.add_argument(
        "--log-interval",
        type=int,
        default=10,
        metavar="N",
        help="how many batches to wait before logging training status",
    )
VoVAllen's avatar
VoVAllen committed
108
109
110
111
112
    args = parser.parse_args()
    use_cuda = not args.no_cuda and torch.cuda.is_available()

    torch.manual_seed(args.seed)

113
    device = torch.device("cuda" if use_cuda else "cpu")
VoVAllen's avatar
VoVAllen committed
114

115
    kwargs = {"num_workers": 1, "pin_memory": True} if use_cuda else {}
VoVAllen's avatar
VoVAllen committed
116
    train_loader = torch.utils.data.DataLoader(
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
        datasets.MNIST(
            "../data",
            train=True,
            download=True,
            transform=transforms.Compose(
                [
                    transforms.ToTensor(),
                    transforms.Normalize((0.1307,), (0.3081,)),
                ]
            ),
        ),
        batch_size=args.batch_size,
        shuffle=True,
        **kwargs
    )
VoVAllen's avatar
VoVAllen committed
132
    test_loader = torch.utils.data.DataLoader(
133
134
135
136
137
138
139
140
141
142
143
144
145
146
        datasets.MNIST(
            "../data",
            train=False,
            transform=transforms.Compose(
                [
                    transforms.ToTensor(),
                    transforms.Normalize((0.1307,), (0.3081,)),
                ]
            ),
        ),
        batch_size=args.test_batch_size,
        shuffle=True,
        **kwargs
    )
VoVAllen's avatar
VoVAllen committed
147
148
149
150
151
152
153
154
155

    model = Net(device=device).to(device)
    optimizer = optim.Adam(model.parameters(), lr=args.lr)

    for epoch in range(1, args.epochs + 1):
        train(args, model, device, train_loader, optimizer, epoch)
        test(args, model, device, test_loader)


156
if __name__ == "__main__":
VoVAllen's avatar
VoVAllen committed
157
    main()