import argparse import torch import torch.optim as optim from model import Net from torchvision import datasets, transforms def train(args, model, device, train_loader, optimizer, epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = model.margin_loss(output, target) loss.backward() optimizer.step() if batch_idx % args.log_interval == 0: print( "Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format( epoch, batch_idx * len(data), len(train_loader.dataset), 100.0 * batch_idx / len(train_loader), loss.item(), ) ) def test(args, model, device, test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += model.margin_loss( output, target ).item() # sum up batch loss pred = ( output.norm(dim=2).squeeze().max(1, keepdim=True)[1] ) # get the index of the max log-probability correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print( "\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n".format( test_loss, correct, len(test_loader.dataset), 100.0 * correct / len(test_loader.dataset), ) ) def main(): # Training settings parser = argparse.ArgumentParser(description="PyTorch MNIST Example") parser.add_argument( "--batch-size", type=int, default=512, metavar="N", help="input batch size for training (default: 64)", ) parser.add_argument( "--test-batch-size", type=int, default=512, metavar="N", help="input batch size for testing (default: 1000)", ) parser.add_argument( "--epochs", type=int, default=10, metavar="N", help="number of epochs to train (default: 10)", ) parser.add_argument( "--lr", type=float, default=0.01, metavar="LR", help="learning rate (default: 0.01)", ) parser.add_argument( "--no-cuda", action="store_true", default=False, help="disables CUDA training", ) parser.add_argument( "--seed", type=int, default=1, metavar="S", help="random seed (default: 1)", ) parser.add_argument( "--log-interval", type=int, default=10, metavar="N", help="how many batches to wait before logging training status", ) args = parser.parse_args() use_cuda = not args.no_cuda and torch.cuda.is_available() torch.manual_seed(args.seed) device = torch.device("cuda" if use_cuda else "cpu") kwargs = {"num_workers": 1, "pin_memory": True} if use_cuda else {} train_loader = torch.utils.data.DataLoader( datasets.MNIST( "../data", train=True, download=True, transform=transforms.Compose( [ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)), ] ), ), batch_size=args.batch_size, shuffle=True, **kwargs ) test_loader = torch.utils.data.DataLoader( datasets.MNIST( "../data", train=False, transform=transforms.Compose( [ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)), ] ), ), batch_size=args.test_batch_size, shuffle=True, **kwargs ) model = Net(device=device).to(device) optimizer = optim.Adam(model.parameters(), lr=args.lr) for epoch in range(1, args.epochs + 1): train(args, model, device, train_loader, optimizer, epoch) test(args, model, device, test_loader) if __name__ == "__main__": main()