node_classification.py 6.04 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import dgl
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import dgl.nn.pytorch as dglnn
import tqdm
import glob
import os
from ogb.nodeproppred import DglNodePropPredDataset
from torchmetrics import Accuracy
import torchmetrics.functional as MF
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning import LightningDataModule, LightningModule, Trainer

class SAGE(LightningModule):
    def __init__(self, in_feats, n_hidden, n_classes):
        super().__init__()
        self.save_hyperparameters()
        self.layers = nn.ModuleList()
        self.layers.append(dglnn.SAGEConv(in_feats, n_hidden, 'mean'))
        self.layers.append(dglnn.SAGEConv(n_hidden, n_hidden, 'mean'))
        self.layers.append(dglnn.SAGEConv(n_hidden, n_classes, 'mean'))
        self.dropout = nn.Dropout(0.5)
        self.n_hidden = n_hidden
        self.n_classes = n_classes
        self.train_acc = Accuracy()
        self.val_acc = Accuracy()

    def forward(self, blocks, x):
        h = x
        for l, (layer, block) in enumerate(zip(self.layers, blocks)):
            h = layer(block, h)
            if l != len(self.layers) - 1:
                h = F.relu(h)
                h = self.dropout(h)
        return h

    def inference(self, g, device, batch_size, num_workers, buffer_device=None):
        # The difference between this inference function and the one in the official
        # example is that the intermediate results can also benefit from prefetching.
        g.ndata['h'] = g.ndata['feat']
        sampler = dgl.dataloading.MultiLayerFullNeighborSampler(1, prefetch_node_feats=['h'])
        dataloader = dgl.dataloading.NodeDataLoader(
                g, torch.arange(g.num_nodes()).to(g.device), sampler, device=device,
                batch_size=batch_size, shuffle=False, drop_last=False, num_workers=num_workers,
                persistent_workers=(num_workers > 0))
        if buffer_device is None:
            buffer_device = device

        for l, layer in enumerate(self.layers):
            y = torch.zeros(
                g.num_nodes(), self.n_hidden if l != len(self.layers) - 1 else self.n_classes,
                device=buffer_device)
            for input_nodes, output_nodes, blocks in tqdm.tqdm(dataloader):
                x = blocks[0].srcdata['h']
                h = layer(blocks[0], x)
                if l != len(self.layers) - 1:
                    h = F.relu(h)
                    h = self.dropout(h)
                y[output_nodes] = h.to(buffer_device)
            g.ndata['h'] = y
        return y

    def training_step(self, batch, batch_idx):
        input_nodes, output_nodes, blocks = batch
        x = blocks[0].srcdata['feat']
        y = blocks[-1].dstdata['label']
        y_hat = self(blocks, x)
        loss = F.cross_entropy(y_hat, y)
        self.train_acc(torch.argmax(y_hat, 1), y)
        self.log('train_acc', self.train_acc, prog_bar=True, on_step=True, on_epoch=False)
        return loss

    def validation_step(self, batch, batch_idx):
        input_nodes, output_nodes, blocks = batch
        x = blocks[0].srcdata['feat']
        y = blocks[-1].dstdata['label']
        y_hat = self(blocks, x)
        self.val_acc(torch.argmax(y_hat, 1), y)
        self.log('val_acc', self.val_acc, prog_bar=True, on_step=True, on_epoch=True, sync_dist=True)

    def configure_optimizers(self):
        optimizer = torch.optim.Adam(self.parameters(), lr=0.001, weight_decay=5e-4)
        return optimizer

class DataModule(LightningDataModule):
    def __init__(self, graph, train_idx, val_idx, fanouts, batch_size, n_classes):
        super().__init__()

        sampler = dgl.dataloading.NeighborSampler(
            fanouts, prefetch_node_feats=['feat'], prefetch_labels=['label'])

        self.g = graph
        self.train_idx, self.val_idx = train_idx, val_idx
        self.sampler = sampler
        self.batch_size = batch_size
        self.in_feats = graph.ndata['feat'].shape[1]
        self.n_classes = n_classes

    def train_dataloader(self):
        return dgl.dataloading.DataLoader(
            self.g, self.train_idx.to('cuda'), self.sampler,
            device='cuda', batch_size=self.batch_size, shuffle=True, drop_last=False,
            # For CPU sampling, set num_workers to nonzero and use_uva=False
            # Set use_ddp to False for single GPU.
            num_workers=0, use_uva=True, use_ddp=True)

    def val_dataloader(self):
        return dgl.dataloading.DataLoader(
            self.g, self.val_idx.to('cuda'), self.sampler,
            device='cuda', batch_size=self.batch_size, shuffle=True, drop_last=False,
            num_workers=0, use_uva=True)

if __name__ == '__main__':
    dataset = DglNodePropPredDataset('ogbn-products')
    graph, labels = dataset[0]
    graph.ndata['label'] = labels.squeeze()
    split_idx = dataset.get_idx_split()
    train_idx, val_idx, test_idx = split_idx['train'], split_idx['valid'], split_idx['test']
    datamodule = DataModule(graph, train_idx, val_idx, [15, 10, 5], 1024, dataset.num_classes)
    model = SAGE(datamodule.in_feats, 256, datamodule.n_classes)

    # Train
    checkpoint_callback = ModelCheckpoint(monitor='val_acc', save_top_k=1)
    # Use this for single GPU
    #trainer = Trainer(gpus=[0], max_epochs=10, callbacks=[checkpoint_callback])
    trainer = Trainer(gpus=[0, 1, 2, 3], max_epochs=10, callbacks=[checkpoint_callback], strategy='ddp_spawn')
    trainer.fit(model, datamodule=datamodule)

    # Test
    dirs = glob.glob('./lightning_logs/*')
    version = max([int(os.path.split(x)[-1].split('_')[-1]) for x in dirs])
    logdir = './lightning_logs/version_%d' % version
    print('Evaluating model in', logdir)
    ckpt = glob.glob(os.path.join(logdir, 'checkpoints', '*'))[0]

    model = SAGE.load_from_checkpoint(
        checkpoint_path=ckpt, hparams_file=os.path.join(logdir, 'hparams.yaml')).to('cuda')
    with torch.no_grad():
        pred = model.inference(graph, 'cuda', 4096, 12, graph.device)
        pred = pred[test_idx]
        label = graph.ndata['label'][test_idx]
        acc = MF.accuracy(pred, label)
    print('Test accuracy:', acc)