test_nn.py 18.3 KB
Newer Older
1
2
3
import tensorflow as tf
from tensorflow.keras import layers
import networkx as nx
4
import pytest
5
6
7
8
import dgl
import dgl.nn.tensorflow as nn
import dgl.function as fn
import backend as F
9
10
from test_utils.graph_cases import get_cases, random_graph, random_bipartite, random_dglgraph
from test_utils import parametrize_dtype
11
12
13
14
15
16
17
18
19
20
21
from copy import deepcopy

import numpy as np
import scipy as sp

def _AXWb(A, X, W, b):
    X = tf.matmul(X, W)
    Y = tf.reshape(tf.matmul(A, tf.reshape(X, (X.shape[0], -1))), X.shape)
    return Y + b

def test_graph_conv():
22
    g = dgl.DGLGraph(nx.path_graph(3)).to(F.ctx())
23
24
25
    ctx = F.ctx()
    adj = tf.sparse.to_dense(tf.sparse.reorder(g.adjacency_matrix(ctx=ctx)))

26
    conv = nn.GraphConv(5, 2, norm='none', bias=True)
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
    # conv = conv
    print(conv)
    # test#1: basic
    h0 = F.ones((3, 5))
    h1 = conv(g, h0)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    assert F.allclose(h1, _AXWb(adj, h0, conv.weight, conv.bias))
    # test#2: more-dim
    h0 = F.ones((3, 5, 5))
    h1 = conv(g, h0)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    assert F.allclose(h1, _AXWb(adj, h0, conv.weight, conv.bias))

    conv = nn.GraphConv(5, 2)
    # conv = conv
    # test#3: basic
    h0 = F.ones((3, 5))
    h1 = conv(g, h0)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    # test#4: basic
    h0 = F.ones((3, 5, 5))
    h1 = conv(g, h0)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0

    conv = nn.GraphConv(5, 2)
    # conv = conv
    # test#3: basic
    h0 = F.ones((3, 5))
    h1 = conv(g, h0)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    # test#4: basic
    h0 = F.ones((3, 5, 5))
    h1 = conv(g, h0)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0

    # test rest_parameters
    # old_weight = deepcopy(conv.weight.data)
    # conv.reset_parameters()
    # new_weight = conv.weight.data
    # assert not F.allclose(old_weight, new_weight)

74
75
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite'], exclude=['zero-degree', 'dglgraph']))
76
77
78
@pytest.mark.parametrize('norm', ['none', 'both', 'right'])
@pytest.mark.parametrize('weight', [True, False])
@pytest.mark.parametrize('bias', [True, False])
79
80
def test_graph_conv2(idtype, g, norm, weight, bias):
    g = g.astype(idtype).to(F.ctx())
81
82
    conv = nn.GraphConv(5, 2, norm=norm, weight=weight, bias=bias)
    ext_w = F.randn((5, 2))
83
84
    nsrc = g.number_of_src_nodes()
    ndst = g.number_of_dst_nodes()
85
    h = F.randn((nsrc, 5))
86
    h_dst = F.randn((ndst, 2))
87
    if weight:
88
        h_out = conv(g, h)
89
    else:
90
91
92
        h_out = conv(g, h, weight=ext_w)
    assert h_out.shape == (ndst, 2)

93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['bipartite'], exclude=['zero-degree', 'dglgraph']))
@pytest.mark.parametrize('norm', ['none', 'both', 'right'])
@pytest.mark.parametrize('weight', [True, False])
@pytest.mark.parametrize('bias', [True, False])
def test_graph_conv2_bi(idtype, g, norm, weight, bias):
    g = g.astype(idtype).to(F.ctx())
    conv = nn.GraphConv(5, 2, norm=norm, weight=weight, bias=bias)
    ext_w = F.randn((5, 2))
    nsrc = g.number_of_src_nodes()
    ndst = g.number_of_dst_nodes()
    h = F.randn((nsrc, 5))
    h_dst = F.randn((ndst, 2))
    if weight:
        h_out = conv(g, (h, h_dst))
    else:
        h_out = conv(g, (h, h_dst), weight=ext_w)
    assert h_out.shape == (ndst, 2)
111
112
113

def test_simple_pool():
    ctx = F.ctx()
114
    g = dgl.DGLGraph(nx.path_graph(15)).to(F.ctx())
115
116
117
118
119
120
121
122
123
124

    sum_pool = nn.SumPooling()
    avg_pool = nn.AvgPooling()
    max_pool = nn.MaxPooling()
    sort_pool = nn.SortPooling(10) # k = 10
    print(sum_pool, avg_pool, max_pool, sort_pool)

    # test#1: basic
    h0 = F.randn((g.number_of_nodes(), 5))
    h1 = sum_pool(g, h0)
125
    assert F.allclose(F.squeeze(h1, 0), F.sum(h0, 0))
126
    h1 = avg_pool(g, h0)
127
    assert F.allclose(F.squeeze(h1, 0), F.mean(h0, 0))
128
    h1 = max_pool(g, h0)
129
    assert F.allclose(F.squeeze(h1, 0), F.max(h0, 0))
130
    h1 = sort_pool(g, h0)
131
    assert h1.shape[0] == 1 and h1.shape[1] == 10 * 5 and h1.ndim == 2
132
133

    # test#2: batched graph
134
    g_ = dgl.DGLGraph(nx.path_graph(5)).to(F.ctx())
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
    bg = dgl.batch([g, g_, g, g_, g])
    h0 = F.randn((bg.number_of_nodes(), 5))
    h1 = sum_pool(bg, h0)
    truth = tf.stack([F.sum(h0[:15], 0),
                      F.sum(h0[15:20], 0),
                      F.sum(h0[20:35], 0),
                      F.sum(h0[35:40], 0),
                      F.sum(h0[40:55], 0)], 0)
    assert F.allclose(h1, truth)

    h1 = avg_pool(bg, h0)
    truth = tf.stack([F.mean(h0[:15], 0),
                      F.mean(h0[15:20], 0),
                      F.mean(h0[20:35], 0),
                      F.mean(h0[35:40], 0),
                      F.mean(h0[40:55], 0)], 0)
    assert F.allclose(h1, truth)

    h1 = max_pool(bg, h0)
    truth = tf.stack([F.max(h0[:15], 0),
                      F.max(h0[15:20], 0),
                      F.max(h0[20:35], 0),
                      F.max(h0[35:40], 0),
                      F.max(h0[40:55], 0)], 0)
    assert F.allclose(h1, truth)

    h1 = sort_pool(bg, h0)
    assert h1.shape[0] == 5 and h1.shape[1] == 10 * 5 and h1.ndim == 2

def uniform_attention(g, shape):
    a = F.ones(shape)
    target_shape = (g.number_of_edges(),) + (1,) * (len(shape) - 1)
    return a / tf.cast(tf.reshape(g.in_degrees(g.edges()[1]), target_shape), tf.float32)

def test_edge_softmax():
    # Basic
171
    g = dgl.DGLGraph(nx.path_graph(3)).to(F.ctx())
172
173
174
175
176
177
178
179
180
181
182
183
184
185
    edata = F.ones((g.number_of_edges(), 1))
    a = nn.edge_softmax(g, edata)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    assert F.allclose(a, uniform_attention(g, a.shape))

    # Test higher dimension case
    edata = F.ones((g.number_of_edges(), 3, 1))
    a = nn.edge_softmax(g, edata)
    assert len(g.ndata) == 0
    assert len(g.edata) == 0
    assert F.allclose(a, uniform_attention(g, a.shape))

    # Test both forward and backward with Tensorflow built-in softmax.
186
    g = dgl.DGLGraph().to(F.ctx())
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
    g.add_nodes(30)
    # build a complete graph
    for i in range(30):
        for j in range(30):
            g.add_edge(i, j)
    
    score = F.randn((900, 1))
    with tf.GradientTape() as tape:
        tape.watch(score)
        grad = F.randn((900, 1))
        y = tf.reshape(F.softmax(tf.reshape(score,(30, 30)), dim=0), (-1, 1))
        grads = tape.gradient(y, [score])
        grad_score = grads[0]

    with tf.GradientTape() as tape:
        tape.watch(score)
        y_dgl = nn.edge_softmax(g, score)
        assert len(g.ndata) == 0
        assert len(g.edata) == 0
        # check forward
        assert F.allclose(y_dgl, y)
        grads = tape.gradient(y_dgl, [score])
    # checkout gradient
    assert F.allclose(grads[0], grad_score)
    print(grads[0][:10], grad_score[:10])

def test_partial_edge_softmax():
214
    g = dgl.DGLGraph().to(F.ctx())
215
216
217
218
219
220
221
222
223
224
    g.add_nodes(30)
    # build a complete graph
    for i in range(30):
        for j in range(30):
            g.add_edge(i, j)

    score = F.randn((300, 1))
    grad = F.randn((300, 1))
    import numpy as np
    eids = np.random.choice(900, 300, replace=False).astype('int64')
225
    eids = F.tensor(eids)
226
227
228
229
230
231
232
    # compute partial edge softmax
    with tf.GradientTape() as tape:
        tape.watch(score)
        y_1 = nn.edge_softmax(g, score, eids)
        grads = tape.gradient(y_1, [score])
    grad_1 = grads[0]
    # compute edge softmax on edge subgraph
233
    subg = g.edge_subgraph(eids, preserve_nodes=True)
234
235
236
237
238
239
240
241
242
243
    with tf.GradientTape() as tape:
        tape.watch(score)
        y_2 = nn.edge_softmax(subg, score)
        grads = tape.gradient(y_2, [score])
    grad_2 = grads[0]

    assert F.allclose(y_1, y_2)
    assert F.allclose(grad_1, grad_2)

def test_glob_att_pool():
244
    g = dgl.DGLGraph(nx.path_graph(10)).to(F.ctx())
245
246
247
248
249
250
251

    gap = nn.GlobalAttentionPooling(layers.Dense(1), layers.Dense(10))
    print(gap)

    # test#1: basic
    h0 = F.randn((g.number_of_nodes(), 5))
    h1 = gap(g, h0)
252
    assert h1.shape[0] == 1 and h1.shape[1] == 10 and h1.ndim == 2
253
254
255
256
257
258
259
260
261
262

    # test#2: batched graph
    bg = dgl.batch([g, g, g, g])
    h0 = F.randn((bg.number_of_nodes(), 5))
    h1 = gap(bg, h0)
    assert h1.shape[0] == 4 and h1.shape[1] == 10 and h1.ndim == 2


def test_rgcn():
    etype = []
263
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True).to(F.ctx())
264
265
266
267
268
269
270
271
272
    # 5 etypes
    R = 5
    for i in range(g.number_of_edges()):
        etype.append(i % 5)
    B = 2
    I = 10
    O = 8

    rgc_basis = nn.RelGraphConv(I, O, R, "basis", B)
273
274
275
    rgc_basis_low = nn.RelGraphConv(I, O, R, "basis", B, low_mem=True)
    rgc_basis_low.weight = rgc_basis.weight
    rgc_basis_low.w_comp = rgc_basis.w_comp
276
277
278
    h = tf.random.normal((100, I))
    r = tf.constant(etype)
    h_new = rgc_basis(g, h, r)
279
    h_new_low = rgc_basis_low(g, h, r)
280
    assert list(h_new.shape) == [100, O]
281
282
    assert list(h_new_low.shape) == [100, O]
    assert F.allclose(h_new, h_new_low)
283
284

    rgc_bdd = nn.RelGraphConv(I, O, R, "bdd", B)
285
286
    rgc_bdd_low = nn.RelGraphConv(I, O, R, "bdd", B, low_mem=True)
    rgc_bdd_low.weight = rgc_bdd.weight
287
288
289
    h = tf.random.normal((100, I))
    r = tf.constant(etype)
    h_new = rgc_bdd(g, h, r)
290
    h_new_low = rgc_bdd_low(g, h, r)
291
    assert list(h_new.shape) == [100, O]
292
293
    assert list(h_new_low.shape) == [100, O]
    assert F.allclose(h_new, h_new_low)
294
295
296
297
298

    # with norm
    norm = tf.zeros((g.number_of_edges(), 1))

    rgc_basis = nn.RelGraphConv(I, O, R, "basis", B)
299
300
301
    rgc_basis_low = nn.RelGraphConv(I, O, R, "basis", B, low_mem=True)
    rgc_basis_low.weight = rgc_basis.weight
    rgc_basis_low.w_comp = rgc_basis.w_comp
302
303
304
    h = tf.random.normal((100, I))
    r = tf.constant(etype)
    h_new = rgc_basis(g, h, r, norm)
305
    h_new_low = rgc_basis_low(g, h, r, norm)
306
    assert list(h_new.shape) == [100, O]
307
308
    assert list(h_new_low.shape) == [100, O]
    assert F.allclose(h_new, h_new_low)
309
310

    rgc_bdd = nn.RelGraphConv(I, O, R, "bdd", B)
311
312
    rgc_bdd_low = nn.RelGraphConv(I, O, R, "bdd", B, low_mem=True)
    rgc_bdd_low.weight = rgc_bdd.weight
313
314
315
    h = tf.random.normal((100, I))
    r = tf.constant(etype)
    h_new = rgc_bdd(g, h, r, norm)
316
    h_new_low = rgc_bdd_low(g, h, r, norm)
317
    assert list(h_new.shape) == [100, O]
318
319
    assert list(h_new_low.shape) == [100, O]
    assert F.allclose(h_new, h_new_low)
320
321
322

    # id input
    rgc_basis = nn.RelGraphConv(I, O, R, "basis", B)
323
324
325
    rgc_basis_low = nn.RelGraphConv(I, O, R, "basis", B, low_mem=True)
    rgc_basis_low.weight = rgc_basis.weight
    rgc_basis_low.w_comp = rgc_basis.w_comp
326
327
    h = tf.constant(np.random.randint(0, I, (100,))) * 1
    r = tf.constant(etype) * 1
328
    h_new = rgc_basis(g, h, r)
329
    h_new_low = rgc_basis_low(g, h, r)
330
    assert list(h_new.shape) == [100, O]
331
332
    assert list(h_new_low.shape) == [100, O]
    assert F.allclose(h_new, h_new_low)
333

334
335
336
337
338
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite']))
def test_gat_conv(g, idtype):
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
339
    gat = nn.GATConv(5, 2, 4)
340
    feat = F.randn((g.number_of_nodes(), 5))
341
    h = gat(g, feat)
342
    assert h.shape == (g.number_of_nodes(), 4, 2)
343

344
345
346
347
348
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['bipartite']))
def test_gat_conv_bi(g, idtype):
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
349
350
    gat = nn.GATConv(5, 2, 4)
    feat = (F.randn((g.number_of_src_nodes(), 5)), F.randn((g.number_of_dst_nodes(), 5)))
351
    h = gat(g, feat)
352
    assert h.shape == (g.number_of_dst_nodes(), 4, 2)
353

354
355
356
357
358
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite']))
@pytest.mark.parametrize('aggre_type', ['mean', 'pool', 'gcn'])
def test_sage_conv(idtype, g, aggre_type):
    g = g.astype(idtype).to(F.ctx())
359
    sage = nn.SAGEConv(5, 10, aggre_type)
360
    feat = F.randn((g.number_of_nodes(), 5))
361
362
363
    h = sage(g, feat)
    assert h.shape[-1] == 10

364
365
366
367
368
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['bipartite']))
@pytest.mark.parametrize('aggre_type', ['mean', 'pool', 'gcn'])
def test_sage_conv_bi(idtype, g, aggre_type):
    g = g.astype(idtype).to(F.ctx())
369
370
371
    sage = nn.SAGEConv(5, 10, aggre_type)
    dst_dim = 5 if aggre_type != 'gcn' else 10
    sage = nn.SAGEConv((10, dst_dim), 2, aggre_type)
372
    feat = (F.randn((g.number_of_src_nodes(), 10)), F.randn((g.number_of_dst_nodes(), dst_dim)))
373
374
    h = sage(g, feat)
    assert h.shape[-1] == 2
375
    assert h.shape[0] == g.number_of_dst_nodes()
376

377
378
379
@parametrize_dtype
@pytest.mark.parametrize('aggre_type', ['mean', 'pool', 'gcn'])
def test_sage_conv_bi_empty(idtype, aggre_type):
Mufei Li's avatar
Mufei Li committed
380
    # Test the case for graphs without edges
381
382
    g = dgl.bipartite([], num_nodes=(5, 3)).to(F.ctx())
    g = g.astype(idtype).to(F.ctx())
Mufei Li's avatar
Mufei Li committed
383
384
385
386
387
388
389
390
391
392
393
394
    sage = nn.SAGEConv((3, 3), 2, 'gcn')
    feat = (F.randn((5, 3)), F.randn((3, 3)))
    h = sage(g, feat)
    assert h.shape[-1] == 2
    assert h.shape[0] == 3
    for aggre_type in ['mean', 'pool', 'lstm']:
        sage = nn.SAGEConv((3, 1), 2, aggre_type)
        feat = (F.randn((5, 3)), F.randn((3, 1)))
        h = sage(g, feat)
        assert h.shape[-1] == 2
        assert h.shape[0] == 3

395
396
def test_sgc_conv():
    ctx = F.ctx()
397
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True).to(F.ctx())
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
    # not cached
    sgc = nn.SGConv(5, 10, 3)
    feat = F.randn((100, 5))

    h = sgc(g, feat)
    assert h.shape[-1] == 10

    # cached
    sgc = nn.SGConv(5, 10, 3, True)
    h_0 = sgc(g, feat)
    h_1 = sgc(g, feat + 1)
    assert F.allclose(h_0, h_1)
    assert h_0.shape[-1] == 10

def test_appnp_conv():
413
    g = dgl.DGLGraph(sp.sparse.random(100, 100, density=0.1), readonly=True).to(F.ctx())
414
415
416
417
418
419
    appnp = nn.APPNPConv(10, 0.1)
    feat = F.randn((100, 5))

    h = appnp(g, feat)
    assert h.shape[-1] == 5

420
421
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['homo', 'block-bipartite']))
422
@pytest.mark.parametrize('aggregator_type', ['mean', 'max', 'sum'])
423
424
425
def test_gin_conv(g, idtype, aggregator_type):
    g = g.astype(idtype).to(F.ctx())
    ctx = F.ctx()
426
427
428
429
    gin = nn.GINConv(
        tf.keras.layers.Dense(12),
        aggregator_type
    )
430
    feat = F.randn((g.number_of_nodes(), 5))
431
    h = gin(g, feat)
432
    assert h.shape == (g.number_of_nodes(), 12)
433

434
435
436
437
438
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['bipartite']))
@pytest.mark.parametrize('aggregator_type', ['mean', 'max', 'sum'])
def test_gin_conv_bi(g, idtype, aggregator_type):
    g = g.astype(idtype).to(F.ctx())
439
440
441
442
    gin = nn.GINConv(
        tf.keras.layers.Dense(12),
        aggregator_type
    )
443
    feat = (F.randn((g.number_of_src_nodes(), 5)), F.randn((g.number_of_dst_nodes(), 5)))
444
    h = gin(g, feat)
445
    assert h.shape == (g.number_of_dst_nodes(), 12)
446

447
448
449
450
451
452
def myagg(alist, dsttype):
    rst = alist[0]
    for i in range(1, len(alist)):
        rst = rst + (i + 1) * alist[i]
    return rst

453
@parametrize_dtype
454
@pytest.mark.parametrize('agg', ['sum', 'max', 'min', 'mean', 'stack', myagg])
455
def test_hetero_conv(agg, idtype):
456
457
458
    g = dgl.heterograph({
        ('user', 'follows', 'user'): [(0, 1), (0, 2), (2, 1), (1, 3)],
        ('user', 'plays', 'game'): [(0, 0), (0, 2), (0, 3), (1, 0), (2, 2)],
459
460
        ('store', 'sells', 'game'): [(0, 0), (0, 3), (1, 1), (1, 2)]},
        idtype=idtype, device=F.ctx())
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
    conv = nn.HeteroGraphConv({
        'follows': nn.GraphConv(2, 3),
        'plays': nn.GraphConv(2, 4),
        'sells': nn.GraphConv(3, 4)},
        agg)
    uf = F.randn((4, 2))
    gf = F.randn((4, 4))
    sf = F.randn((2, 3))
    uf_dst = F.randn((4, 3))
    gf_dst = F.randn((4, 4))

    h = conv(g, {'user': uf})
    assert set(h.keys()) == {'user', 'game'}
    if agg != 'stack':
        assert h['user'].shape == (4, 3)
        assert h['game'].shape == (4, 4)
    else:
        assert h['user'].shape == (4, 1, 3)
        assert h['game'].shape == (4, 1, 4)

    h = conv(g, {'user': uf, 'store': sf})
    assert set(h.keys()) == {'user', 'game'}
    if agg != 'stack':
        assert h['user'].shape == (4, 3)
        assert h['game'].shape == (4, 4)
    else:
        assert h['user'].shape == (4, 1, 3)
        assert h['game'].shape == (4, 2, 4)

    h = conv(g, {'store': sf})
    assert set(h.keys()) == {'game'}
    if agg != 'stack':
        assert h['game'].shape == (4, 4)
    else:
        assert h['game'].shape == (4, 1, 4)

    # test with pair input
    conv = nn.HeteroGraphConv({
        'follows': nn.SAGEConv(2, 3, 'mean'),
        'plays': nn.SAGEConv((2, 4), 4, 'mean'),
        'sells': nn.SAGEConv(3, 4, 'mean')},
        agg)

    h = conv(g, ({'user': uf}, {'user' : uf, 'game' : gf}))
    assert set(h.keys()) == {'user', 'game'}
    if agg != 'stack':
        assert h['user'].shape == (4, 3)
        assert h['game'].shape == (4, 4)
    else:
        assert h['user'].shape == (4, 1, 3)
        assert h['game'].shape == (4, 1, 4)

    # pair input requires both src and dst type features to be provided
    h = conv(g, ({'user': uf}, {'game' : gf}))
    assert set(h.keys()) == {'game'}
    if agg != 'stack':
        assert h['game'].shape == (4, 4)
    else:
        assert h['game'].shape == (4, 1, 4)

    # test with mod args
    class MyMod(tf.keras.layers.Layer):
        def __init__(self, s1, s2):
            super(MyMod, self).__init__()
            self.carg1 = 0
            self.carg2 = 0
            self.s1 = s1
            self.s2 = s2
        def call(self, g, h, arg1=None, *, arg2=None):
            if arg1 is not None:
                self.carg1 += 1
            if arg2 is not None:
                self.carg2 += 1
            return tf.zeros((g.number_of_dst_nodes(), self.s2))
    mod1 = MyMod(2, 3)
    mod2 = MyMod(2, 4)
    mod3 = MyMod(3, 4)
    conv = nn.HeteroGraphConv({
        'follows': mod1,
        'plays': mod2,
        'sells': mod3},
        agg)
    mod_args = {'follows' : (1,), 'plays' : (1,)}
    mod_kwargs = {'sells' : {'arg2' : 'abc'}}
    h = conv(g, {'user' : uf, 'store' : sf}, mod_args=mod_args, mod_kwargs=mod_kwargs)
    assert mod1.carg1 == 1
    assert mod1.carg2 == 0
    assert mod2.carg1 == 1
    assert mod2.carg2 == 0
    assert mod3.carg1 == 0
    assert mod3.carg2 == 1

553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
if __name__ == '__main__':
    test_graph_conv()
    test_edge_softmax()
    test_partial_edge_softmax()
    # test_set2set()
    test_glob_att_pool()
    test_simple_pool()
    # test_set_trans()
    test_rgcn()
    # test_tagconv()
    test_gat_conv()
    test_sage_conv()
    test_sgc_conv()
    test_appnp_conv()
    test_gin_conv()
    # test_agnn_conv()
    # test_gated_graph_conv()
    # test_nn_conv()
    # test_gmm_conv()
    # test_dense_graph_conv()
    # test_dense_sage_conv()
    # test_dense_cheb_conv()
    # test_sequential()