test_graph.py 13.8 KB
Newer Older
1
2
3
import math
import numpy as np
import scipy.sparse as sp
4
import networkx as nx
5
import dgl
6
import backend as F
7
from dgl import DGLError
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
# graph generation: a random graph with 10 nodes
#  and 20 edges.
#  - has self loop
#  - no multi edge
def edge_pair_input(sort=False):
    if sort:
        src = [0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 6, 7, 7, 7, 9]
        dst = [4, 6, 9, 3, 5, 3, 7, 5, 8, 1, 3, 4, 9, 1, 9, 6, 2, 8, 9, 2]
        return src, dst
    else:
        src = [0, 0, 4, 5, 0, 4, 7, 4, 4, 3, 2, 7, 7, 5, 3, 2, 1, 9, 6, 1]
        dst = [9, 6, 3, 9, 4, 4, 9, 9, 1, 8, 3, 2, 8, 1, 5, 7, 3, 2, 6, 5]
        return src, dst

def nx_input():
    g = nx.DiGraph()
    src, dst = edge_pair_input()
    for i, e in enumerate(zip(src, dst)):
        g.add_edge(*e, id=i)
    return g

def elist_input():
    src, dst = edge_pair_input()
    return list(zip(src, dst))

def scipy_coo_input():
    src, dst = edge_pair_input()
    return sp.coo_matrix((np.ones((20,)), (src, dst)), shape=(10,10))

def scipy_csr_input():
    src, dst = edge_pair_input()
    csr = sp.coo_matrix((np.ones((20,)), (src, dst)), shape=(10,10)).tocsr()
    csr.sort_indices()
    # src = [0 0 0 1 1 2 2 3 3 4 4 4 4 5 5 6 7 7 7 9]
    # dst = [4 6 9 3 5 3 7 5 8 1 3 4 9 1 9 6 2 8 9 2]
    return csr

def gen_by_mutation():
    g = dgl.DGLGraph()
    src, dst = edge_pair_input()
    g.add_nodes(10)
    g.add_edges(src, dst)
    return g

Da Zheng's avatar
Da Zheng committed
53
54
def gen_from_data(data, readonly, sort):
    return dgl.DGLGraph(data, readonly=readonly, sort_csr=True)
55
56
57
58
59
60
61
62
63
64
65
66

def test_query():
    def _test_one(g):
        assert g.number_of_nodes() == 10
        assert g.number_of_edges() == 20
        assert len(g) == 10
        assert not g.is_multigraph

        for i in range(10):
            assert g.has_node(i)
            assert i in g
        assert not g.has_node(11)
67
68
        assert not 11 in g
        assert F.allclose(g.has_nodes([0,2,10,11]), F.tensor([1,1,0,0]))
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

        src, dst = edge_pair_input()
        for u, v in zip(src, dst):
            assert g.has_edge_between(u, v)
        assert not g.has_edge_between(0, 0)
        assert F.allclose(g.has_edges_between([0, 0, 3], [0, 9, 8]), F.tensor([0,1,1]))
        assert set(F.asnumpy(g.predecessors(9))) == set([0,5,7,4])
        assert set(F.asnumpy(g.successors(2))) == set([7,3])

        assert g.edge_id(4,4) == 5
        assert F.allclose(g.edge_ids([4,0], [4,9]), F.tensor([5,0]))

        src, dst = g.find_edges([3, 6, 5])
        assert F.allclose(src, F.tensor([5, 7, 4]))
        assert F.allclose(dst, F.tensor([9, 9, 4]))

        src, dst, eid = g.in_edges(9, form='all')
        tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
        assert set(tup) == set([(0,9,0),(5,9,3),(7,9,6),(4,9,7)])
        src, dst, eid = g.in_edges([9,0,8], form='all')  # test node#0 has no in edges
        tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
        assert set(tup) == set([(0,9,0),(5,9,3),(7,9,6),(4,9,7),(3,8,9),(7,8,12)])

        src, dst, eid = g.out_edges(0, form='all')
        tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
        assert set(tup) == set([(0,9,0),(0,6,1),(0,4,4)])
        src, dst, eid = g.out_edges([0,4,8], form='all')  # test node#8 has no out edges
        tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
        assert set(tup) == set([(0,9,0),(0,6,1),(0,4,4),(4,3,2),(4,4,5),(4,9,7),(4,1,8)])

        src, dst, eid = g.edges('all', 'eid')
        t_src, t_dst = edge_pair_input()
        t_tup = list(zip(t_src, t_dst, list(range(20))))
        tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
        assert set(tup) == set(t_tup)
        assert list(F.asnumpy(eid)) == list(range(20))

        src, dst, eid = g.edges('all', 'srcdst')
        t_src, t_dst = edge_pair_input()
        t_tup = list(zip(t_src, t_dst, list(range(20))))
        tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
        assert set(tup) == set(t_tup)
        assert list(F.asnumpy(src)) == sorted(list(F.asnumpy(src)))

        assert g.in_degree(0) == 0
        assert g.in_degree(9) == 4
        assert F.allclose(g.in_degrees([0, 9]), F.tensor([0, 4]))
        assert g.out_degree(8) == 0
        assert g.out_degree(9) == 1
        assert F.allclose(g.out_degrees([8, 9]), F.tensor([0, 1]))

Mufei Li's avatar
Mufei Li committed
120
121
122
123
        assert np.array_equal(
                F.sparse_to_numpy(g.adjacency_matrix(transpose=False)), scipy_coo_input().toarray().T)
        assert np.array_equal(
                F.sparse_to_numpy(g.adjacency_matrix(transpose=True)), scipy_coo_input().toarray())
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

    def _test(g):
        # test twice to see whether the cached format works or not
        _test_one(g)
        _test_one(g)

    def _test_csr_one(g):
        assert g.number_of_nodes() == 10
        assert g.number_of_edges() == 20
        assert len(g) == 10
        assert not g.is_multigraph

        for i in range(10):
            assert g.has_node(i)
            assert i in g
        assert not g.has_node(11)
140
141
        assert not 11 in g
        assert F.allclose(g.has_nodes([0,2,10,11]), F.tensor([1,1,0,0]))
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

        src, dst = edge_pair_input(sort=True)
        for u, v in zip(src, dst):
            assert g.has_edge_between(u, v)
        assert not g.has_edge_between(0, 0)
        assert F.allclose(g.has_edges_between([0, 0, 3], [0, 9, 8]), F.tensor([0,1,1]))
        assert set(F.asnumpy(g.predecessors(9))) == set([0,5,7,4])
        assert set(F.asnumpy(g.successors(2))) == set([7,3])

        # src = [0 0 0 1 1 2 2 3 3 4 4 4 4 5 5 6 7 7 7 9]
        # dst = [4 6 9 3 5 3 7 5 8 1 3 4 9 1 9 6 2 8 9 2]
        # eid = [0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9]
        assert g.edge_id(4,4) == 11
        assert F.allclose(g.edge_ids([4,0], [4,9]), F.tensor([11,2]))

        src, dst = g.find_edges([3, 6, 5])
        assert F.allclose(src, F.tensor([1, 2, 2]))
        assert F.allclose(dst, F.tensor([3, 7, 3]))

        src, dst, eid = g.in_edges(9, form='all')
        tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
        assert set(tup) == set([(0,9,2),(5,9,14),(7,9,18),(4,9,12)])
        src, dst, eid = g.in_edges([9,0,8], form='all')  # test node#0 has no in edges
        tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
        assert set(tup) == set([(0,9,2),(5,9,14),(7,9,18),(4,9,12),(3,8,8),(7,8,17)])

        src, dst, eid = g.out_edges(0, form='all')
        tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
        assert set(tup) == set([(0,9,2),(0,6,1),(0,4,0)])
        src, dst, eid = g.out_edges([0,4,8], form='all')  # test node#8 has no out edges
        tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
        assert set(tup) == set([(0,9,2),(0,6,1),(0,4,0),(4,3,10),(4,4,11),(4,9,12),(4,1,9)])

        src, dst, eid = g.edges('all', 'eid')
        t_src, t_dst = edge_pair_input(sort=True)
        t_tup = list(zip(t_src, t_dst, list(range(20))))
        tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
        assert set(tup) == set(t_tup)
        assert list(F.asnumpy(eid)) == list(range(20))

        src, dst, eid = g.edges('all', 'srcdst')
        t_src, t_dst = edge_pair_input(sort=True)
        t_tup = list(zip(t_src, t_dst, list(range(20))))
        tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
        assert set(tup) == set(t_tup)
        assert list(F.asnumpy(src)) == sorted(list(F.asnumpy(src)))

        assert g.in_degree(0) == 0
        assert g.in_degree(9) == 4
        assert F.allclose(g.in_degrees([0, 9]), F.tensor([0, 4]))
        assert g.out_degree(8) == 0
        assert g.out_degree(9) == 1
        assert F.allclose(g.out_degrees([8, 9]), F.tensor([0, 1]))

Mufei Li's avatar
Mufei Li committed
196
197
198
199
        assert np.array_equal(
                F.sparse_to_numpy(g.adjacency_matrix(transpose=False)), scipy_coo_input().toarray().T)
        assert np.array_equal(
                F.sparse_to_numpy(g.adjacency_matrix(transpose=True)), scipy_coo_input().toarray())
200
201
202
203
204
205
206

    def _test_csr(g):
        # test twice to see whether the cached format works or not
        _test_csr_one(g)
        _test_csr_one(g)

    _test(gen_by_mutation())
Da Zheng's avatar
Da Zheng committed
207
208
209
210
211
212
213
214
215
216
    _test(gen_from_data(elist_input(), False, False))
    _test(gen_from_data(elist_input(), True, False))
    _test(gen_from_data(elist_input(), True, True))
    _test(gen_from_data(nx_input(), False, False))
    _test(gen_from_data(nx_input(), True, False))
    _test(gen_from_data(scipy_coo_input(), False, False))
    _test(gen_from_data(scipy_coo_input(), True, False))

    _test_csr(gen_from_data(scipy_csr_input(), False, False))
    _test_csr(gen_from_data(scipy_csr_input(), True, False))
217
218

def test_mutation():
219
220
221
    g = dgl.DGLGraph()
    # test add nodes with data
    g.add_nodes(5)
222
223
224
225
226
    g.add_nodes(5, {'h' : F.ones((5, 2))})
    ans = F.cat([F.zeros((5, 2)), F.ones((5, 2))], 0)
    assert F.allclose(ans, g.ndata['h'])
    g.ndata['w'] = 2 * F.ones((10, 2))
    assert F.allclose(2 * F.ones((10, 2)), g.ndata['w'])
227
228
    # test add edges with data
    g.add_edges([2, 3], [3, 4])
229
230
231
    g.add_edges([0, 1], [1, 2], {'m' : F.ones((2, 2))})
    ans = F.cat([F.zeros((2, 2)), F.ones((2, 2))], 0)
    assert F.allclose(ans, g.edata['m'])
232
233
234
    # test clear and add again
    g.clear()
    g.add_nodes(5)
235
236
    g.ndata['h'] = 3 * F.ones((5, 2))
    assert F.allclose(3 * F.ones((5, 2)), g.ndata['h'])
237
238
239
240
    g.init_ndata('h1', (g.number_of_nodes(), 3), 'float32')
    assert F.allclose(F.zeros((g.number_of_nodes(), 3)), g.ndata['h1'])
    g.init_edata('h2', (g.number_of_edges(), 3), 'float32')
    assert F.allclose(F.zeros((g.number_of_edges(), 3)), g.edata['h2'])
241

242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
def test_scipy_adjmat():
    g = dgl.DGLGraph()
    g.add_nodes(10)
    g.add_edges(range(9), range(1, 10))

    adj_0 = g.adjacency_matrix_scipy()
    adj_1 = g.adjacency_matrix_scipy(fmt='coo')
    assert np.array_equal(adj_0.toarray(), adj_1.toarray())

    adj_t0 = g.adjacency_matrix_scipy(transpose=True)
    adj_t_1 = g.adjacency_matrix_scipy(transpose=True, fmt='coo')
    assert np.array_equal(adj_0.toarray(), adj_1.toarray())

    g.readonly()
    adj_2 = g.adjacency_matrix_scipy()
    adj_3 = g.adjacency_matrix_scipy(fmt='coo')
    assert np.array_equal(adj_2.toarray(), adj_3.toarray())
    assert np.array_equal(adj_0.toarray(), adj_2.toarray())

    adj_t2 = g.adjacency_matrix_scipy(transpose=True)
    adj_t3 = g.adjacency_matrix_scipy(transpose=True, fmt='coo')
    assert np.array_equal(adj_t2.toarray(), adj_t3.toarray())
    assert np.array_equal(adj_t0.toarray(), adj_t2.toarray())

266
267
268
269
270
271
272
273
def test_incmat():
    g = dgl.DGLGraph()
    g.add_nodes(4)
    g.add_edge(0, 1) # 0
    g.add_edge(0, 2) # 1
    g.add_edge(0, 3) # 2
    g.add_edge(2, 3) # 3
    g.add_edge(1, 1) # 4
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
    inc_in = F.sparse_to_numpy(g.incidence_matrix('in'))
    inc_out = F.sparse_to_numpy(g.incidence_matrix('out'))
    inc_both = F.sparse_to_numpy(g.incidence_matrix('both'))
    print(inc_in)
    print(inc_out)
    print(inc_both)
    assert np.allclose(
            inc_in,
            np.array([[0., 0., 0., 0., 0.],
                      [1., 0., 0., 0., 1.],
                      [0., 1., 0., 0., 0.],
                      [0., 0., 1., 1., 0.]]))
    assert np.allclose(
            inc_out,
            np.array([[1., 1., 1., 0., 0.],
                      [0., 0., 0., 0., 1.],
                      [0., 0., 0., 1., 0.],
                      [0., 0., 0., 0., 0.]]))
    assert np.allclose(
            inc_both,
            np.array([[-1., -1., -1., 0., 0.],
                      [1., 0., 0., 0., 0.],
                      [0., 1., 0., -1., 0.],
                      [0., 0., 1., 1., 0.]]))
298

299
300
301
302
303
304
305
306
307
308
309
310
311
def test_readonly():
    g = dgl.DGLGraph()
    g.add_nodes(5)
    g.add_edges([0, 1, 2, 3], [1, 2, 3, 4])
    g.ndata['x'] = F.zeros((5, 3))
    g.edata['x'] = F.zeros((4, 4))

    g.readonly(False)
    assert g._graph.is_readonly() == False
    assert g.number_of_nodes() == 5
    assert g.number_of_edges() == 4

    g.readonly()
312
    assert g._graph.is_readonly() == True
313
314
315
316
317
318
319
320
321
322
323
324
    assert g.number_of_nodes() == 5
    assert g.number_of_edges() == 4

    try:
        g.add_nodes(5)
        fail = False
    except DGLError:
        fail = True
    finally:
        assert fail

    g.readonly()
325
    assert g._graph.is_readonly() == True
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
    assert g.number_of_nodes() == 5
    assert g.number_of_edges() == 4

    try:
        g.add_nodes(5)
        fail = False
    except DGLError:
        fail = True
    finally:
        assert fail

    g.readonly(False)
    assert g._graph.is_readonly() == False
    assert g.number_of_nodes() == 5
    assert g.number_of_edges() == 4

    try:
        g.add_nodes(10)
        g.add_edges([4, 5, 6, 7, 8, 9, 10, 11, 12, 13],
                    [5, 6, 7, 8, 9, 10, 11, 12, 13, 14])
        fail = False
    except DGLError:
        fail = True
    finally:
        assert not fail
        assert g.number_of_nodes() == 15
        assert F.shape(g.ndata['x']) == (15, 3)
        assert g.number_of_edges() == 14
        assert F.shape(g.edata['x']) == (14, 4)

356
357
358
359
360
def test_find_edges():
    g = dgl.DGLGraph()
    g.add_nodes(10)
    g.add_edges(range(9), range(1, 10))
    e = g.find_edges([1, 3, 2, 4])
361
362
    assert F.asnumpy(e[0][0]) == 1 and F.asnumpy(e[0][1]) == 3 and F.asnumpy(e[0][2]) == 2 and F.asnumpy(e[0][3]) == 4
    assert F.asnumpy(e[1][0]) == 2 and F.asnumpy(e[1][1]) == 4 and F.asnumpy(e[1][2]) == 3 and F.asnumpy(e[1][3]) == 5
363
364
365
366
367
368
369
370
371
372
373

    try:
        g.find_edges([10])
        fail = False
    except DGLError:
        fail = True
    finally:
        assert fail

    g.readonly()
    e = g.find_edges([1, 3, 2, 4])
374
375
    assert F.asnumpy(e[0][0]) == 1 and F.asnumpy(e[0][1]) == 3 and F.asnumpy(e[0][2]) == 2 and F.asnumpy(e[0][3]) == 4
    assert F.asnumpy(e[1][0]) == 2 and F.asnumpy(e[1][1]) == 4 and F.asnumpy(e[1][2]) == 3 and F.asnumpy(e[1][3]) == 5
376
377
378
379
380
381
382
383
384

    try:
        g.find_edges([10])
        fail = False
    except DGLError:
        fail = True
    finally:
        assert fail

385
if __name__ == '__main__':
386
387
    test_query()
    test_mutation()
388
    test_scipy_adjmat()
389
    test_incmat()
390
    test_readonly()
391
    test_find_edges()