"vscode:/vscode.git/clone" did not exist on "3a278d701d3a0bba25ad52891653330ece2cb472"
test_graph.py 7.53 KB
Newer Older
1
2
3
4
import time
import math
import numpy as np
import scipy.sparse as sp
5
import networkx as nx
6
import dgl
7
import backend as F
8
from dgl import DGLError
9
10
11
12
13

def test_graph_creation():
    g = dgl.DGLGraph()
    # test add nodes with data
    g.add_nodes(5)
14
15
16
17
18
    g.add_nodes(5, {'h' : F.ones((5, 2))})
    ans = F.cat([F.zeros((5, 2)), F.ones((5, 2))], 0)
    assert F.allclose(ans, g.ndata['h'])
    g.ndata['w'] = 2 * F.ones((10, 2))
    assert F.allclose(2 * F.ones((10, 2)), g.ndata['w'])
19
20
    # test add edges with data
    g.add_edges([2, 3], [3, 4])
21
22
23
    g.add_edges([0, 1], [1, 2], {'m' : F.ones((2, 2))})
    ans = F.cat([F.zeros((2, 2)), F.ones((2, 2))], 0)
    assert F.allclose(ans, g.edata['m'])
24
25
26
    # test clear and add again
    g.clear()
    g.add_nodes(5)
27
28
    g.ndata['h'] = 3 * F.ones((5, 2))
    assert F.allclose(3 * F.ones((5, 2)), g.ndata['h'])
29
30
31
32
    g.init_ndata('h1', (g.number_of_nodes(), 3), 'float32')
    assert F.allclose(F.zeros((g.number_of_nodes(), 3)), g.ndata['h1'])
    g.init_edata('h2', (g.number_of_edges(), 3), 'float32')
    assert F.allclose(F.zeros((g.number_of_edges(), 3)), g.edata['h2'])
33

34
35
36
37
38
39
def test_create_from_elist():
    elist = [(2, 1), (1, 0), (2, 0), (3, 0), (0, 2)]
    g = dgl.DGLGraph(elist)
    for i, (u, v) in enumerate(elist):
        assert g.edge_id(u, v) == i
    # immutable graph
Minjie Wang's avatar
Minjie Wang committed
40
41
42
43
    # XXX: not enabled for pytorch
    #g = dgl.DGLGraph(elist, readonly=True)
    #for i, (u, v) in enumerate(elist):
    #    assert g.edge_id(u, v) == i
44

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
def test_scipy_adjmat():
    g = dgl.DGLGraph()
    g.add_nodes(10)
    g.add_edges(range(9), range(1, 10))

    adj_0 = g.adjacency_matrix_scipy()
    adj_1 = g.adjacency_matrix_scipy(fmt='coo')
    assert np.array_equal(adj_0.toarray(), adj_1.toarray())

    adj_t0 = g.adjacency_matrix_scipy(transpose=True)
    adj_t_1 = g.adjacency_matrix_scipy(transpose=True, fmt='coo')
    assert np.array_equal(adj_0.toarray(), adj_1.toarray())

    g.readonly()
    adj_2 = g.adjacency_matrix_scipy()
    adj_3 = g.adjacency_matrix_scipy(fmt='coo')
    assert np.array_equal(adj_2.toarray(), adj_3.toarray())
    assert np.array_equal(adj_0.toarray(), adj_2.toarray())

    adj_t2 = g.adjacency_matrix_scipy(transpose=True)
    adj_t3 = g.adjacency_matrix_scipy(transpose=True, fmt='coo')
    assert np.array_equal(adj_t2.toarray(), adj_t3.toarray())
    assert np.array_equal(adj_t0.toarray(), adj_t2.toarray())

69
def test_adjmat_cache():
70
71
72
73
74
75
    n = 1000
    p = 10 * math.log(n) / n
    a = sp.random(n, n, p, data_rvs=lambda n: np.ones(n))
    g = dgl.DGLGraph(a)
    # the first call should contruct the adj
    t0 = time.time()
76
    adj1 = g.adjacency_matrix()
77
78
79
    dur1 = time.time() - t0
    # the second call should be cached and should be very fast
    t0 = time.time()
80
    adj2 = g.adjacency_matrix()
81
    dur2 = time.time() - t0
82
83
    print('first time {}, second time {}'.format(dur1, dur2))
    assert dur2 < dur1
84
85
86
87
88
89
90
91
92
93
94
95
    assert id(adj1) == id(adj2)
    # different arg should result in different cache
    adj3 = g.adjacency_matrix(transpose=True)
    assert id(adj3) != id(adj2)
    # manually clear the cache
    g.clear_cache()
    adj35 = g.adjacency_matrix()
    assert id(adj35) != id(adj2)
    # mutating the graph should invalidate the cache
    g.add_nodes(10)
    adj4 = g.adjacency_matrix()
    assert id(adj4) != id(adj35)
96
97
98
99
100
101
102
103
104

def test_incmat():
    g = dgl.DGLGraph()
    g.add_nodes(4)
    g.add_edge(0, 1) # 0
    g.add_edge(0, 2) # 1
    g.add_edge(0, 3) # 2
    g.add_edge(2, 3) # 3
    g.add_edge(1, 1) # 4
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
    inc_in = F.sparse_to_numpy(g.incidence_matrix('in'))
    inc_out = F.sparse_to_numpy(g.incidence_matrix('out'))
    inc_both = F.sparse_to_numpy(g.incidence_matrix('both'))
    print(inc_in)
    print(inc_out)
    print(inc_both)
    assert np.allclose(
            inc_in,
            np.array([[0., 0., 0., 0., 0.],
                      [1., 0., 0., 0., 1.],
                      [0., 1., 0., 0., 0.],
                      [0., 0., 1., 1., 0.]]))
    assert np.allclose(
            inc_out,
            np.array([[1., 1., 1., 0., 0.],
                      [0., 0., 0., 0., 1.],
                      [0., 0., 0., 1., 0.],
                      [0., 0., 0., 0., 0.]]))
    assert np.allclose(
            inc_both,
            np.array([[-1., -1., -1., 0., 0.],
                      [1., 0., 0., 0., 0.],
                      [0., 1., 0., -1., 0.],
                      [0., 0., 1., 1., 0.]]))
129

130
def test_incmat_cache():
131
    n = 1000
132
    p = 10 * math.log(n) / n
133
134
    a = sp.random(n, n, p, data_rvs=lambda n: np.ones(n))
    g = dgl.DGLGraph(a)
135
    # the first call should contruct the inc
136
    t0 = time.time()
137
    inc1 = g.incidence_matrix("in")
138
139
140
    dur1 = time.time() - t0
    # the second call should be cached and should be very fast
    t0 = time.time()
141
    inc2 = g.incidence_matrix("in")
142
    dur2 = time.time() - t0
143
    print('first time {}, second time {}'.format(dur1, dur2))
144
    assert dur2 < dur1
145
146
    assert id(inc1) == id(inc2)
    # different arg should result in different cache
Minjie Wang's avatar
Minjie Wang committed
147
    inc3 = g.incidence_matrix("both")
148
149
150
151
152
153
154
155
156
    assert id(inc3) != id(inc2)
    # manually clear the cache
    g.clear_cache()
    inc35 = g.incidence_matrix("in")
    assert id(inc35) != id(inc2)
    # mutating the graph should invalidate the cache
    g.add_nodes(10)
    inc4 = g.incidence_matrix("in")
    assert id(inc4) != id(inc35)
157

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
def test_readonly():
    g = dgl.DGLGraph()
    g.add_nodes(5)
    g.add_edges([0, 1, 2, 3], [1, 2, 3, 4])
    g.ndata['x'] = F.zeros((5, 3))
    g.edata['x'] = F.zeros((4, 4))

    g.readonly(False)
    assert g._graph.is_readonly() == False
    assert g.number_of_nodes() == 5
    assert g.number_of_edges() == 4

    g.readonly()
    assert g._graph.is_readonly() == True 
    assert g.number_of_nodes() == 5
    assert g.number_of_edges() == 4

    try:
        g.add_nodes(5)
        fail = False
    except DGLError:
        fail = True
    finally:
        assert fail

    g.readonly()
    assert g._graph.is_readonly() == True 
    assert g.number_of_nodes() == 5
    assert g.number_of_edges() == 4

    try:
        g.add_nodes(5)
        fail = False
    except DGLError:
        fail = True
    finally:
        assert fail

    g.readonly(False)
    assert g._graph.is_readonly() == False
    assert g.number_of_nodes() == 5
    assert g.number_of_edges() == 4

    try:
        g.add_nodes(10)
        g.add_edges([4, 5, 6, 7, 8, 9, 10, 11, 12, 13],
                    [5, 6, 7, 8, 9, 10, 11, 12, 13, 14])
        fail = False
    except DGLError:
        fail = True
    finally:
        assert not fail
        assert g.number_of_nodes() == 15
        assert F.shape(g.ndata['x']) == (15, 3)
        assert g.number_of_edges() == 14
        assert F.shape(g.edata['x']) == (14, 4)

215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
def test_find_edges():
    g = dgl.DGLGraph()
    g.add_nodes(10)
    g.add_edges(range(9), range(1, 10))
    e = g.find_edges([1, 3, 2, 4])
    assert e[0][0] == 1 and e[0][1] == 3 and e[0][2] == 2 and e[0][3] == 4
    assert e[1][0] == 2 and e[1][1] == 4 and e[1][2] == 3 and e[1][3] == 5

    try:
        g.find_edges([10])
        fail = False
    except DGLError:
        fail = True
    finally:
        assert fail

    g.readonly()
    e = g.find_edges([1, 3, 2, 4])
    assert e[0][0] == 1 and e[0][1] == 3 and e[0][2] == 2 and e[0][3] == 4
    assert e[1][0] == 2 and e[1][1] == 4 and e[1][2] == 3 and e[1][3] == 5

    try:
        g.find_edges([10])
        fail = False
    except DGLError:
        fail = True
    finally:
        assert fail

244
if __name__ == '__main__':
245
    test_graph_creation()
246
    test_create_from_elist()
247
    test_adjmat_cache()
248
    test_scipy_adjmat()
249
    test_incmat()
250
    test_incmat_cache()
251
    test_readonly()
252
    test_find_edges()