utils.py 22.5 KB
Newer Older
1
import json
2
3
import logging
import os
4
from itertools import cycle
5

6
import constants
7
8

import dgl
9
10
import numpy as np
import psutil
11
import pyarrow
12
13

import torch
14
from dgl.distributed.partition import _dump_part_config
15
from pyarrow import csv
16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
DATA_TYPE_ID = {
    data_type: id
    for id, data_type in enumerate(
        [
            torch.float32,
            torch.float64,
            torch.float16,
            torch.uint8,
            torch.int8,
            torch.int16,
            torch.int32,
            torch.int64,
            torch.bool,
        ]
    )
}

REV_DATA_TYPE_ID = {id: data_type for data_type, id in DATA_TYPE_ID.items()}

36

37
def read_ntype_partition_files(schema_map, input_dir):
38
    """
39
40
    Utility method to read the partition id mapping for each node.
    For each node type, there will be an file, in the input directory argument
41
    containing the partition id mapping for a given nodeid.
42
43
44

    Parameters:
    -----------
45
46
47
    schema_map : dictionary
        dictionary created by reading the input metadata json file
    input_dir : string
48
        directory in which the node-id to partition-id mappings files are
49
        located for each of the node types in the input graph
50
51
52

    Returns:
    --------
53
    numpy array :
54
        array of integers representing mapped partition-ids for a given node-id.
55
56
57
58
59
        The line number, in these files, are used as the type_node_id in each of
        the files. The index into this array will be the homogenized node-id and
        value will be the partition-id for that node-id (index). Please note that
        the partition-ids of each node-type are stacked together vertically and
        in this way heterogenous node-ids are converted to homogenous node-ids.
60
    """
61
62
    assert os.path.isdir(input_dir)

63
    # iterate over the node types and extract the partition id mappings
64
65
66
    part_ids = []
    ntype_names = schema_map[constants.STR_NODE_TYPE]
    for ntype in ntype_names:
67
68
69
70
71
72
73
74
        df = csv.read_csv(
            os.path.join(input_dir, "{}.txt".format(ntype)),
            read_options=pyarrow.csv.ReadOptions(
                autogenerate_column_names=True
            ),
            parse_options=pyarrow.csv.ParseOptions(delimiter=" "),
        )
        ntype_partids = df["f0"].to_numpy()
75
76
        part_ids.append(ntype_partids)
    return np.concatenate(part_ids)
77

78

79
80
81
def read_json(json_file):
    """
    Utility method to read a json file schema
82

83
84
85
86
87
88
89
90
91
92
93
94
95
96
    Parameters:
    -----------
    json_file : string
        file name for the json schema

    Returns:
    --------
    dictionary, as serialized in the json_file
    """
    with open(json_file) as schema:
        val = json.load(schema)

    return val

97

98
99
100
101
102
103
104
105
106
107
108
109
110
111
def get_etype_featnames(etype_name, schema_map):
    """Retrieves edge feature names for a given edge_type

    Parameters:
    -----------
    eype_name : string
        a string specifying a edge_type name

    schema : dictionary
        metadata json object as a dictionary, which is read from the input
        metadata file from the input dataset

    Returns:
    --------
112
    list :
113
114
115
116
117
118
        a list of feature names for a given edge_type
    """
    edge_data = schema_map[constants.STR_EDGE_DATA]
    feats = edge_data.get(etype_name, {})
    return [feat for feat in feats]

119
120

def get_ntype_featnames(ntype_name, schema_map):
121
122
123
124
125
126
127
128
129
130
131
132
133
134
    """
    Retrieves node feature names for a given node_type

    Parameters:
    -----------
    ntype_name : string
        a string specifying a node_type name

    schema : dictionary
        metadata json object as a dictionary, which is read from the input
        metadata file from the input dataset

    Returns:
    --------
135
    list :
136
137
        a list of feature names for a given node_type
    """
138
139
140
    node_data = schema_map[constants.STR_NODE_DATA]
    feats = node_data.get(ntype_name, {})
    return [feat for feat in feats]
141

142

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
def get_edge_types(schema_map):
    """Utility method to extract edge_typename -> edge_type mappings
    as defined by the input schema

    Parameters:
    -----------
    schema_map : dictionary
        Input schema from which the edge_typename -> edge_typeid
        dictionary is created.

    Returns:
    --------
    dictionary
        with keys as edge type names and values as ids (integers)
    list
        list of etype name strings
    dictionary
        with keys as etype ids (integers) and values as edge type names
    """
    etypes = schema_map[constants.STR_EDGE_TYPE]
163
164
    etype_etypeid_map = {e: i for i, e in enumerate(etypes)}
    etypeid_etype_map = {i: e for i, e in enumerate(etypes)}
165
166
    return etype_etypeid_map, etypes, etypeid_etype_map

167

168
def get_node_types(schema_map):
169
    """
170
171
172
173
174
    Utility method to extract node_typename -> node_type mappings
    as defined by the input schema

    Parameters:
    -----------
175
    schema_map : dictionary
176
177
178
179
180
        Input schema from which the node_typename -> node_type
        dictionary is created.

    Returns:
    --------
181
182
183
184
185
186
    dictionary
        with keys as node type names and values as ids (integers)
    list
        list of ntype name strings
    dictionary
        with keys as ntype ids (integers) and values as node type names
187
    """
188
    ntypes = schema_map[constants.STR_NODE_TYPE]
189
190
    ntype_ntypeid_map = {e: i for i, e in enumerate(ntypes)}
    ntypeid_ntype_map = {i: e for i, e in enumerate(ntypes)}
191
192
    return ntype_ntypeid_map, ntypes, ntypeid_ntype_map

193

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
def get_gid_offsets(typenames, typecounts):
    """
    Builds a map where the key-value pairs are typnames and respective
    global-id offsets.

    Parameters:
    -----------
    typenames : list of strings
        a list of strings which can be either node typenames or edge typenames
    typecounts : list of integers
        a list of integers indicating the total number of nodes/edges for its
        typeid which is the index in this list

    Returns:
    --------
    dictionary :
        a dictionary where keys are node_type names and values are
        global_nid range, which is a tuple.

    """
    assert len(typenames) == len(
        typecounts
    ), f"No. of typenames does not match with its type counts names = {typenames}, counts = {typecounts}"

    counts = []
    for name in typenames:
        counts.append(typecounts[name])
    starts = np.cumsum([0] + counts[:-1])
    ends = np.cumsum(counts)

    gid_offsets = {}
    for idx, name in enumerate(typenames):
        gid_offsets[name] = [starts[idx], ends[idx]]
    return gid_offsets

    """
    starts = np.cumsum([0] + type_counts[:-1])
    ends = np.cumsum(type_counts)
    gid_offsets = {}
    for idx, name in enumerate(typenames):
        gid_offsets[name] = [start[idx], ends[idx]]

    return gid_offsets
    """


240
def get_gnid_range_map(node_tids):
241
    """
242
    Retrieves auxiliary dictionaries from the metadata json object
243
244
245

    Parameters:
    -----------
246
247
    node_tids: dictionary
        This dictionary contains the information about nodes for each node_type.
248
        Typically this information contains p-entries, where each entry has a file-name,
249
250
251
        starting and ending type_node_ids for the nodes in this file. Keys in this dictionary
        are the node_type and value is a list of lists. Each individual entry in this list has
        three items: file-name, starting type_nid and ending type_nid
252
253
254

    Returns:
    --------
255
    dictionary :
256
257
        a dictionary where keys are node_type names and values are global_nid range, which is a tuple.

258
    """
259
    ntypes_gid_range = {}
260
    offset = 0
261
    for k, v in node_tids.items():
262
263
264
265
        ntypes_gid_range[k] = [offset + int(v[0][0]), offset + int(v[-1][1])]
        offset += int(v[-1][1])

    return ntypes_gid_range
266

267
268
269
270

def write_metadata_json(
    input_list, output_dir, graph_name, world_size, num_parts
):
271
    """
272
    Merge json schema's from each of the rank's on rank-0.
273
274
275
276
277
278
279
280
281
282
283
    This utility function, to be used on rank-0, to create aggregated json file.

    Parameters:
    -----------
    metadata_list : list of json (dictionaries)
        a list of json dictionaries to merge on rank-0
    output_dir : string
        output directory path in which results are stored (as a json file)
    graph-name : string
        a string specifying the graph name
    """
284
    # Preprocess the input_list, a list of dictionaries
285
    # each dictionary will contain num_parts/world_size metadata json
286
287
    # which correspond to local partitions on the respective ranks.
    metadata_list = []
288
    for local_part_id in range(num_parts // world_size):
289
        for idx in range(world_size):
290
291
292
293
294
            metadata_list.append(
                input_list[idx][
                    "local-part-id-" + str(local_part_id * world_size + idx)
                ]
            )
295

296
    # Initialize global metadata
297
298
    graph_metadata = {}

299
    # Merge global_edge_ids from each json object in the input list
300
301
302
303
304
    edge_map = {}
    x = metadata_list[0]["edge_map"]
    for k in x:
        edge_map[k] = []
        for idx in range(len(metadata_list)):
305
306
307
308
309
310
            edge_map[k].append(
                [
                    int(metadata_list[idx]["edge_map"][k][0][0]),
                    int(metadata_list[idx]["edge_map"][k][0][1]),
                ]
            )
311
312
313
314
315
316
    graph_metadata["edge_map"] = edge_map

    graph_metadata["etypes"] = metadata_list[0]["etypes"]
    graph_metadata["graph_name"] = metadata_list[0]["graph_name"]
    graph_metadata["halo_hops"] = metadata_list[0]["halo_hops"]

317
    # Merge global_nodeids from each of json object in the input list
318
319
320
321
322
    node_map = {}
    x = metadata_list[0]["node_map"]
    for k in x:
        node_map[k] = []
        for idx in range(len(metadata_list)):
323
324
325
326
327
328
            node_map[k].append(
                [
                    int(metadata_list[idx]["node_map"][k][0][0]),
                    int(metadata_list[idx]["node_map"][k][0][1]),
                ]
            )
329
330
331
    graph_metadata["node_map"] = node_map

    graph_metadata["ntypes"] = metadata_list[0]["ntypes"]
332
333
334
335
336
337
    graph_metadata["num_edges"] = int(
        sum([metadata_list[i]["num_edges"] for i in range(len(metadata_list))])
    )
    graph_metadata["num_nodes"] = int(
        sum([metadata_list[i]["num_nodes"] for i in range(len(metadata_list))])
    )
338
339
340
341
    graph_metadata["num_parts"] = metadata_list[0]["num_parts"]
    graph_metadata["part_method"] = metadata_list[0]["part_method"]

    for i in range(len(metadata_list)):
342
343
344
345
346
        graph_metadata["part-{}".format(i)] = metadata_list[i][
            "part-{}".format(i)
        ]

    _dump_part_config(f"{output_dir}/metadata.json", graph_metadata)
347
348


349
350
351
def augment_edge_data(
    edge_data, lookup_service, edge_tids, rank, world_size, num_parts
):
352
353
    """
    Add partition-id (rank which owns an edge) column to the edge_data.
354

355
356
357
358
    Parameters:
    -----------
    edge_data : numpy ndarray
        Edge information as read from the xxx_edges.txt file
359
360
361
362
363
364
365
366
367
368
    lookup_service : instance of class DistLookupService
       Distributed lookup service used to map global-nids to respective partition-ids and▒
       shuffle-global-nids
    edge_tids: dictionary
        dictionary where keys are canonical edge types and values are list of tuples
        which indicate the range of edges assigned to each of the partitions
    rank : integer
        rank of the current process
    world_size : integer
        total no. of process participating in the communication primitives
369
370
    num_parts : integer
        total no. of partitions requested for the input graph
371
372
373

    Returns:
    --------
374
375
    dictionary :
        dictionary with keys as column names and values as numpy arrays and this information is
376
377
        loaded from input dataset files. In addition to this we include additional columns which
        aid this pipelines computation, like constants.OWNER_PROCESS
378
    """
379
    # add global_nids to the node_data
380
381
    etype_offset = {}
    offset = 0
382
    for etype_name, tid_range in edge_tids.items():
383
384
385
386
        etype_offset[etype_name] = offset + int(tid_range[0][0])
        offset += int(tid_range[-1][1])

    global_eids = []
387
    for etype_name, tid_range in edge_tids.items():
388
389
        for idx in range(num_parts):
            if map_partid_rank(idx, world_size) == rank:
390
391
392
393
394
395
396
397
398
399
400
                if len(tid_range) > idx:
                    global_eid_start = etype_offset[etype_name]
                    begin = global_eid_start + int(tid_range[idx][0])
                    end = global_eid_start + int(tid_range[idx][1])
                    global_eids.append(np.arange(begin, end, dtype=np.int64))

    global_eids = (
        np.concatenate(global_eids)
        if len(global_eids) > 0
        else np.array([], dtype=np.int64)
    )
401
    assert global_eids.shape[0] == edge_data[constants.ETYPE_ID].shape[0]
402
    edge_data[constants.GLOBAL_EID] = global_eids
403
    return edge_data
404

405

406
def read_edges_file(edge_file, edge_data_dict):
407
    """
408
409
410
411
412
413
414
415
416
417
418
    Utility function to read xxx_edges.txt file

    Parameters:
    -----------
    edge_file : string
        Graph file for edges in the input graph

    Returns:
    --------
    dictionary
        edge data as read from xxx_edges.txt file and columns are stored
419
        in a dictionary with key-value pairs as column-names and column-data.
420
421
422
423
    """
    if edge_file == "" or edge_file == None:
        return None

424
425
    # Read the file from here.
    # <global_src_id> <global_dst_id> <type_eid> <etype> <attributes>
426
427
428
    # global_src_id -- global idx for the source node ... line # in the graph_nodes.txt
    # global_dst_id -- global idx for the destination id node ... line # in the graph_nodes.txt

429
430
431
432
433
    edge_data_df = csv.read_csv(
        edge_file,
        read_options=pyarrow.csv.ReadOptions(autogenerate_column_names=True),
        parse_options=pyarrow.csv.ParseOptions(delimiter=" "),
    )
434
    edge_data_dict = {}
435
436
437
438
    edge_data_dict[constants.GLOBAL_SRC_ID] = edge_data_df["f0"].to_numpy()
    edge_data_dict[constants.GLOBAL_DST_ID] = edge_data_df["f1"].to_numpy()
    edge_data_dict[constants.GLOBAL_TYPE_EID] = edge_data_df["f2"].to_numpy()
    edge_data_dict[constants.ETYPE_ID] = edge_data_df["f3"].to_numpy()
439
440
    return edge_data_dict

441

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
def read_node_features_file(nodes_features_file):
    """
    Utility function to load tensors from a file

    Parameters:
    -----------
    nodes_features_file : string
        Features file for nodes in the graph

    Returns:
    --------
    dictionary
        mappings between ntype and list of features
    """

    node_features = dgl.data.utils.load_tensors(nodes_features_file, False)
    return node_features

460

461
def read_edge_features_file(edge_features_file):
462
    """
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
    Utility function to load tensors from a file

    Parameters:
    -----------
    edge_features_file : string
        Features file for edges in the graph

    Returns:
    --------
    dictionary
        mappings between etype and list of features
    """
    edge_features = dgl.data.utils.load_tensors(edge_features_file, True)
    return edge_features

478

479
480
481
482
483
484
485
486
def write_node_features(node_features, node_file):
    """
    Utility function to serialize node_features in node_file file

    Parameters:
    -----------
    node_features : dictionary
        dictionary storing ntype <-> list of features
487
    node_file     : string
488
489
490
491
        File in which the node information is serialized
    """
    dgl.data.utils.save_tensors(node_file, node_features)

492
493

def write_edge_features(edge_features, edge_file):
494
495
496
497
498
499
500
    """
    Utility function to serialize edge_features in edge_file file

    Parameters:
    -----------
    edge_features : dictionary
        dictionary storing etype <-> list of features
501
    edge_file     : string
502
503
504
505
        File in which the edge information is serialized
    """
    dgl.data.utils.save_tensors(edge_file, edge_features)

506

507
def write_graph_dgl(graph_file, graph_obj, formats, sort_etypes):
508
509
510
511
512
513
514
515
516
    """
    Utility function to serialize graph dgl objects

    Parameters:
    -----------
    graph_obj : dgl graph object
        graph dgl object, as created in convert_partition.py, which is to be serialized
    graph_file : string
        File name in which graph object is serialized
517
518
519
520
    formats : str or list[str]
        Save graph in specified formats.
    sort_etypes : bool
        Whether to sort etypes in csc/csr.
521
    """
522
523
524
525
    dgl.distributed.partition._save_graphs(
        graph_file, [graph_obj], formats, sort_etypes
    )

526

527
528
529
530
531
532
533
534
535
536
537
def write_dgl_objects(
    graph_obj,
    node_features,
    edge_features,
    output_dir,
    part_id,
    orig_nids,
    orig_eids,
    formats,
    sort_etypes,
):
538
    """
539
    Wrapper function to write graph, node/edge feature, original node/edge IDs.
540
541
542

    Parameters:
    -----------
543
544
545
546
547
548
    graph_obj : dgl object
        graph dgl object as created in convert_partition.py file
    node_features : dgl object
        Tensor data for node features
    edge_features : dgl object
        Tensor data for edge features
549
550
551
552
    output_dir : string
        location where the output files will be located
    part_id : int
        integer indicating the partition-id
553
554
555
556
    orig_nids : dict
        original node IDs
    orig_eids : dict
        original edge IDs
557
558
559
560
    formats : str or list[str]
        Save graph in formats.
    sort_etypes : bool
        Whether to sort etypes in csc/csr.
561
    """
562
    part_dir = output_dir + "/part" + str(part_id)
563
    os.makedirs(part_dir, exist_ok=True)
564
565
566
    write_graph_dgl(
        os.path.join(part_dir, "graph.dgl"), graph_obj, formats, sort_etypes
    )
567
568

    if node_features != None:
569
570
571
        write_node_features(
            node_features, os.path.join(part_dir, "node_feat.dgl")
        )
572

573
574
575
576
    if edge_features != None:
        write_edge_features(
            edge_features, os.path.join(part_dir, "edge_feat.dgl")
        )
577

578
    if orig_nids is not None:
579
        orig_nids_file = os.path.join(part_dir, "orig_nids.dgl")
580
581
        dgl.data.utils.save_tensors(orig_nids_file, orig_nids)
    if orig_eids is not None:
582
        orig_eids_file = os.path.join(part_dir, "orig_eids.dgl")
583
584
        dgl.data.utils.save_tensors(orig_eids_file, orig_eids)

585
586

def get_idranges(names, counts, num_chunks=None):
587
    """
588
589
    counts will be a list of numbers of a dictionary.
    Length is less than or equal to the num_parts variable.
590
591
592
593

    Parameters:
    -----------
    names : list of strings
594
595
596
597
        which are either node-types or edge-types
    counts : list of integers
        which are total no. of nodes or edges for a give node
        or edge type
598
    num_chunks : int, optional
599
        specifying the no. of chunks
600
601
602
603
604

    Returns:
    --------
    dictionary
        dictionary where the keys are node-/edge-type names and values are
605
606
        list of tuples where each tuple indicates the range of values for
        corresponding type-ids.
607
608
609
610
611
612
613
614
615
    dictionary
        dictionary where the keys are node-/edge-type names and value is a tuple.
        This tuple indicates the global-ids for the associated node-/edge-type.
    """
    gnid_start = 0
    gnid_end = gnid_start
    tid_dict = {}
    gid_dict = {}

616
617
618
    for idx, typename in enumerate(names):
        gnid_end += counts[typename]
        tid_dict[typename] = [[0, counts[typename]]]
619
        gid_dict[typename] = np.array([gnid_start, gnid_end]).reshape([1, 2])
620
621
622
623
        gnid_start = gnid_end

    return tid_dict, gid_dict

624

625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
def get_ntype_counts_map(ntypes, ntype_counts):
    """
    Return a dictionary with key, value pairs as node type names and no. of
    nodes of a particular type in the input graph.

    Parameters:
    -----------
    ntypes : list of strings
        where each string is a node-type name
    ntype_counts : list of integers
        where each integer is the total no. of nodes for that, idx, node type

    Returns:
    --------
    dictinary :
        a dictionary where node-type names are keys and values are total no.
        of nodes for a given node-type name (which is also the key)
    """
    return dict(zip(ntypes, ntype_counts))


646
647
648
649
def memory_snapshot(tag, rank):
    """
    Utility function to take a snapshot of the usage of system resources
    at a given point of time.
650
651

    Parameters:
652
653
654
655
656
657
658
659
660
661
    -----------
    tag : string
        string provided by the user for bookmarking purposes
    rank : integer
        process id of the participating process
    """
    GB = 1024 * 1024 * 1024
    MB = 1024 * 1024
    KB = 1024

662
    peak = dgl.partition.get_peak_mem() * KB
663
664
665
666
667
    mem = psutil.virtual_memory()
    avail = mem.available / MB
    used = mem.used / MB
    total = mem.total / MB

668
669
    mem_string = f"{total:.0f} (MB) total, {peak:.0f} (MB) peak, {used:.0f} (MB) used, {avail:.0f} (MB) avail"
    logging.debug(f"[Rank: {rank} MEMORY_SNAPSHOT] {mem_string} - {tag}")
670

671
672
673

def map_partid_rank(partid, world_size):
    """Auxiliary function to map a given partition id to one of the rank in the
674
    MPI_WORLD processes. The range of partition ids is assumed to equal or a
675
676
677
678
679
680
681
682
683
684
    multiple of the total size of MPI_WORLD. In this implementation, we use
    a cyclical mapping procedure to convert partition ids to ranks.

    Parameters:
    -----------
    partid : int
        partition id, as read from node id to partition id mappings.

    Returns:
    --------
685
    int :
686
687
688
689
        rank of the process, which will be responsible for the given partition
        id.
    """
    return partid % world_size
690
691
692


def generate_read_list(num_files, world_size):
693
694
695
696
    """
    Generate the file IDs to read for each rank
    using sequential assignment.

697
698
699
700
701
702
703
704
705
706
707

    Parameters:
    -----------
    num_files : int
        Total number of files.
    world_size : int
        World size of group.

    Returns:
    --------
    read_list : np.array
708
709
710
711
712
        Array of target file IDs to read. Each worker is expected
        to read the list of file indexes in its rank's index in the list.
        e.g. rank 0 reads the file indexed in read_list[0], rank 1 the
        ones in read_list[1] etc.

713
714
715
716
717
718
719

    Examples
    --------
    >>> tools.distpartitionning.utils.generate_read_list(10, 4)
    [array([0, 1, 2]), array([3, 4, 5]), array([6, 7]), array([8, 9])]
    """
    return np.array_split(np.arange(num_files), world_size)
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751


def generate_roundrobin_read_list(num_files, world_size):
    """
    Generate the file IDs to read for each rank
    using round robin assignment.

    Parameters:
    -----------
    num_files : int
        Total number of files.
    world_size : int
        World size of group.

    Returns:
    --------
    read_list : np.array
        Array of target file IDs to read. Each worker is expected
        to read the list of file indexes in its rank's index in the list.
        e.g. rank 0 reads the indexed in read_list[0], rank 1 the
        ones in read_list[1] etc.

    Examples
    --------
    >>> tools.distpartitionning.utils.generate_roundrobin_read_list(10, 4)
    [[0, 4, 8], [1, 5, 9], [2, 6], [3, 7]]
    """
    assignment_lists = [[] for _ in range(world_size)]
    for rank, part_idx in zip(cycle(range(world_size)), range(num_files)):
        assignment_lists[rank].append(part_idx)

    return assignment_lists