test_subgraph_sampler.py 17.5 KB
Newer Older
1
import dgl
2
import dgl.graphbolt as gb
3
4
import pytest
import torch
5
from torchdata.datapipes.iter import Mapper
6

7
8
from . import gb_test_utils

9

10
11
def test_SubgraphSampler_invoke():
    itemset = gb.ItemSet(torch.arange(10), names="seed_nodes")
12
    item_sampler = gb.ItemSampler(itemset, batch_size=2)
13
14

    # Invoke via class constructor.
15
    datapipe = gb.SubgraphSampler(item_sampler)
16
17
18
19
    with pytest.raises(NotImplementedError):
        next(iter(datapipe))

    # Invokde via functional form.
20
    datapipe = item_sampler.sample_subgraph()
21
22
23
24
25
26
    with pytest.raises(NotImplementedError):
        next(iter(datapipe))


@pytest.mark.parametrize("labor", [False, True])
def test_NeighborSampler_invoke(labor):
27
    graph = gb_test_utils.rand_csc_graph(20, 0.15, bidirection_edge=True)
28
    itemset = gb.ItemSet(torch.arange(10), names="seed_nodes")
29
    item_sampler = gb.ItemSampler(itemset, batch_size=2)
30
31
32
33
34
    num_layer = 2
    fanouts = [torch.LongTensor([2]) for _ in range(num_layer)]

    # Invoke via class constructor.
    Sampler = gb.LayerNeighborSampler if labor else gb.NeighborSampler
35
    datapipe = Sampler(item_sampler, graph, fanouts)
36
37
38
39
    assert len(list(datapipe)) == 5

    # Invokde via functional form.
    if labor:
40
        datapipe = item_sampler.sample_layer_neighbor(graph, fanouts)
41
    else:
42
        datapipe = item_sampler.sample_neighbor(graph, fanouts)
43
44
45
    assert len(list(datapipe)) == 5


46
47
@pytest.mark.parametrize("labor", [False, True])
def test_NeighborSampler_fanouts(labor):
48
    graph = gb_test_utils.rand_csc_graph(20, 0.15, bidirection_edge=True)
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
    itemset = gb.ItemSet(torch.arange(10), names="seed_nodes")
    item_sampler = gb.ItemSampler(itemset, batch_size=2)
    num_layer = 2

    # `fanouts` is a list of tensors.
    fanouts = [torch.LongTensor([2]) for _ in range(num_layer)]
    if labor:
        datapipe = item_sampler.sample_layer_neighbor(graph, fanouts)
    else:
        datapipe = item_sampler.sample_neighbor(graph, fanouts)
    assert len(list(datapipe)) == 5

    # `fanouts` is a list of integers.
    fanouts = [2 for _ in range(num_layer)]
    if labor:
        datapipe = item_sampler.sample_layer_neighbor(graph, fanouts)
    else:
        datapipe = item_sampler.sample_neighbor(graph, fanouts)
    assert len(list(datapipe)) == 5


70
71
@pytest.mark.parametrize("labor", [False, True])
def test_SubgraphSampler_Node(labor):
72
    graph = gb_test_utils.rand_csc_graph(20, 0.15, bidirection_edge=True)
73
74
    itemset = gb.ItemSet(torch.arange(10), names="seed_nodes")
    item_sampler = gb.ItemSampler(itemset, batch_size=2)
75
76
    num_layer = 2
    fanouts = [torch.LongTensor([2]) for _ in range(num_layer)]
77
    Sampler = gb.LayerNeighborSampler if labor else gb.NeighborSampler
78
    sampler_dp = Sampler(item_sampler, graph, fanouts)
79
    assert len(list(sampler_dp)) == 5
80
81


82
def to_link_batch(data):
83
    block = gb.MiniBatch(node_pairs=data)
84
    return block
85
86


87
88
@pytest.mark.parametrize("labor", [False, True])
def test_SubgraphSampler_Link(labor):
89
    graph = gb_test_utils.rand_csc_graph(20, 0.15, bidirection_edge=True)
90
91
    itemset = gb.ItemSet(torch.arange(0, 20).reshape(-1, 2), names="node_pairs")
    item_sampler = gb.ItemSampler(itemset, batch_size=2)
92
93
    num_layer = 2
    fanouts = [torch.LongTensor([2]) for _ in range(num_layer)]
94
    Sampler = gb.LayerNeighborSampler if labor else gb.NeighborSampler
95
    neighbor_dp = Sampler(item_sampler, graph, fanouts)
96
    assert len(list(neighbor_dp)) == 5
97
98


99
@pytest.mark.parametrize("labor", [False, True])
100
def test_SubgraphSampler_Link_With_Negative(labor):
101
    graph = gb_test_utils.rand_csc_graph(20, 0.15, bidirection_edge=True)
102
103
    itemset = gb.ItemSet(torch.arange(0, 20).reshape(-1, 2), names="node_pairs")
    item_sampler = gb.ItemSampler(itemset, batch_size=2)
104
105
    num_layer = 2
    fanouts = [torch.LongTensor([2]) for _ in range(num_layer)]
106
    negative_dp = gb.UniformNegativeSampler(item_sampler, graph, 1)
107
108
    Sampler = gb.LayerNeighborSampler if labor else gb.NeighborSampler
    neighbor_dp = Sampler(negative_dp, graph, fanouts)
109
    assert len(list(neighbor_dp)) == 5
110
111


112
113
114
115
116
117
118
def get_hetero_graph():
    # COO graph:
    # [0, 0, 1, 1, 2, 2, 3, 3, 4, 4]
    # [2, 4, 2, 3, 0, 1, 1, 0, 0, 1]
    # [1, 1, 1, 1, 0, 0, 0, 0, 0] - > edge type.
    # num_nodes = 5, num_n1 = 2, num_n2 = 3
    ntypes = {"n1": 0, "n2": 1}
119
    etypes = {"n1:e1:n2": 0, "n2:e2:n1": 1}
120
121
122
123
    indptr = torch.LongTensor([0, 2, 4, 6, 8, 10])
    indices = torch.LongTensor([2, 4, 2, 3, 0, 1, 1, 0, 0, 1])
    type_per_edge = torch.LongTensor([1, 1, 1, 1, 0, 0, 0, 0, 0, 0])
    node_type_offset = torch.LongTensor([0, 2, 5])
124
    return gb.from_fused_csc(
125
126
127
128
        indptr,
        indices,
        node_type_offset=node_type_offset,
        type_per_edge=type_per_edge,
129
130
        node_type_to_id=ntypes,
        edge_type_to_id=etypes,
131
    )
132
133


134
135
136
137
138
139
140
141
142
143
144
145
146
@pytest.mark.parametrize("labor", [False, True])
def test_SubgraphSampler_Node_Hetero(labor):
    graph = get_hetero_graph()
    itemset = gb.ItemSetDict(
        {"n2": gb.ItemSet(torch.arange(3), names="seed_nodes")}
    )
    item_sampler = gb.ItemSampler(itemset, batch_size=2)
    num_layer = 2
    fanouts = [torch.LongTensor([2]) for _ in range(num_layer)]
    Sampler = gb.LayerNeighborSampler if labor else gb.NeighborSampler
    sampler_dp = Sampler(item_sampler, graph, fanouts)
    assert len(list(sampler_dp)) == 2
    for minibatch in sampler_dp:
peizhou001's avatar
peizhou001 committed
147
        assert len(minibatch.sampled_subgraphs) == num_layer
148
149


150
151
@pytest.mark.parametrize("labor", [False, True])
def test_SubgraphSampler_Link_Hetero(labor):
152
153
154
    graph = get_hetero_graph()
    itemset = gb.ItemSetDict(
        {
155
            "n1:e1:n2": gb.ItemSet(
156
157
                torch.LongTensor([[0, 0, 1, 1], [0, 2, 0, 1]]).T,
                names="node_pairs",
158
            ),
159
            "n2:e2:n1": gb.ItemSet(
160
161
                torch.LongTensor([[0, 0, 1, 1, 2, 2], [0, 1, 1, 0, 0, 1]]).T,
                names="node_pairs",
162
163
164
            ),
        }
    )
165

166
    item_sampler = gb.ItemSampler(itemset, batch_size=2)
167
168
    num_layer = 2
    fanouts = [torch.LongTensor([2]) for _ in range(num_layer)]
169
    Sampler = gb.LayerNeighborSampler if labor else gb.NeighborSampler
170
    neighbor_dp = Sampler(item_sampler, graph, fanouts)
171
    assert len(list(neighbor_dp)) == 5
172
173


174
@pytest.mark.parametrize("labor", [False, True])
175
def test_SubgraphSampler_Link_Hetero_With_Negative(labor):
176
177
178
    graph = get_hetero_graph()
    itemset = gb.ItemSetDict(
        {
179
            "n1:e1:n2": gb.ItemSet(
180
181
                torch.LongTensor([[0, 0, 1, 1], [0, 2, 0, 1]]).T,
                names="node_pairs",
182
            ),
183
            "n2:e2:n1": gb.ItemSet(
184
185
                torch.LongTensor([[0, 0, 1, 1, 2, 2], [0, 1, 1, 0, 0, 1]]).T,
                names="node_pairs",
186
187
188
189
            ),
        }
    )

190
    item_sampler = gb.ItemSampler(itemset, batch_size=2)
191
192
    num_layer = 2
    fanouts = [torch.LongTensor([2]) for _ in range(num_layer)]
193
    negative_dp = gb.UniformNegativeSampler(item_sampler, graph, 1)
194
195
    Sampler = gb.LayerNeighborSampler if labor else gb.NeighborSampler
    neighbor_dp = Sampler(negative_dp, graph, fanouts)
196
    assert len(list(neighbor_dp)) == 5
197
198
199
200
201
202
203
204
205
206
207
208
209


@pytest.mark.parametrize("labor", [False, True])
def test_SubgraphSampler_Random_Hetero_Graph(labor):
    num_nodes = 5
    num_edges = 9
    num_ntypes = 3
    num_etypes = 3
    (
        csc_indptr,
        indices,
        node_type_offset,
        type_per_edge,
210
211
        node_type_to_id,
        edge_type_to_id,
212
213
214
215
216
217
218
    ) = gb_test_utils.random_hetero_graph(
        num_nodes, num_edges, num_ntypes, num_etypes
    )
    edge_attributes = {
        "A1": torch.randn(num_edges),
        "A2": torch.randn(num_edges),
    }
219
    graph = gb.from_fused_csc(
220
221
        csc_indptr,
        indices,
222
223
224
225
226
        node_type_offset=node_type_offset,
        type_per_edge=type_per_edge,
        node_type_to_id=node_type_to_id,
        edge_type_to_id=edge_type_to_id,
        edge_attributes=edge_attributes,
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
    )
    itemset = gb.ItemSetDict(
        {
            "n2": gb.ItemSet(torch.tensor([0]), names="seed_nodes"),
            "n1": gb.ItemSet(torch.tensor([1]), names="seed_nodes"),
        }
    )

    item_sampler = gb.ItemSampler(itemset, batch_size=2)
    num_layer = 2
    fanouts = [torch.LongTensor([2]) for _ in range(num_layer)]
    Sampler = gb.LayerNeighborSampler if labor else gb.NeighborSampler
    sampler_dp = Sampler(item_sampler, graph, fanouts, replace=True)

    for data in sampler_dp:
        for sampledsubgraph in data.sampled_subgraphs:
            for _, value in sampledsubgraph.node_pairs.items():
                assert torch.equal(
                    torch.ge(value[0], torch.zeros(len(value[0]))),
                    torch.ones(len(value[0])),
                )
                assert torch.equal(
                    torch.ge(value[1], torch.zeros(len(value[1]))),
                    torch.ones(len(value[1])),
                )
            for _, value in sampledsubgraph.original_column_node_ids.items():
                assert torch.equal(
                    torch.ge(value, torch.zeros(len(value))),
                    torch.ones(len(value)),
                )
            for _, value in sampledsubgraph.original_row_node_ids.items():
                assert torch.equal(
                    torch.ge(value, torch.zeros(len(value))),
                    torch.ones(len(value)),
                )
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375


@pytest.mark.parametrize("labor", [False, True])
def test_SubgraphSampler_without_dedpulication_Homo(labor):
    graph = dgl.graph(
        ([5, 0, 1, 5, 6, 7, 2, 2, 4], [0, 1, 2, 2, 2, 2, 3, 4, 4])
    )
    graph = gb.from_dglgraph(graph, True)
    seed_nodes = torch.LongTensor([0, 3, 4])

    itemset = gb.ItemSet(seed_nodes, names="seed_nodes")
    item_sampler = gb.ItemSampler(itemset, batch_size=len(seed_nodes))
    num_layer = 2
    fanouts = [torch.LongTensor([2]) for _ in range(num_layer)]

    Sampler = gb.LayerNeighborSampler if labor else gb.NeighborSampler
    datapipe = Sampler(item_sampler, graph, fanouts, deduplicate=False)

    length = [17, 7]
    compacted_indices = [
        torch.arange(0, 10) + 7,
        torch.arange(0, 4) + 3,
    ]
    indptr = [
        torch.tensor([0, 1, 2, 4, 4, 6, 8, 10]),
        torch.tensor([0, 1, 2, 4]),
    ]
    seeds = [torch.tensor([0, 3, 4, 5, 2, 2, 4]), torch.tensor([0, 3, 4])]
    for data in datapipe:
        for step, sampled_subgraph in enumerate(data.sampled_subgraphs):
            assert len(sampled_subgraph.original_row_node_ids) == length[step]
            assert torch.equal(
                sampled_subgraph.node_pairs.indices, compacted_indices[step]
            )
            assert torch.equal(sampled_subgraph.node_pairs.indptr, indptr[step])
            assert torch.equal(
                sampled_subgraph.original_column_node_ids, seeds[step]
            )


@pytest.mark.parametrize("labor", [False, True])
def test_SubgraphSampler_without_dedpulication_Hetero(labor):
    graph = get_hetero_graph()
    itemset = gb.ItemSetDict(
        {"n2": gb.ItemSet(torch.arange(2), names="seed_nodes")}
    )
    item_sampler = gb.ItemSampler(itemset, batch_size=2)
    num_layer = 2
    fanouts = [torch.LongTensor([2]) for _ in range(num_layer)]
    Sampler = gb.LayerNeighborSampler if labor else gb.NeighborSampler
    datapipe = Sampler(item_sampler, graph, fanouts, deduplicate=False)
    csc_formats = [
        {
            "n1:e1:n2": gb.CSCFormatBase(
                indptr=torch.tensor([0, 2, 4]),
                indices=torch.tensor([4, 5, 6, 7]),
            ),
            "n2:e2:n1": gb.CSCFormatBase(
                indptr=torch.tensor([0, 2, 4, 6, 8]),
                indices=torch.tensor([2, 3, 4, 5, 6, 7, 8, 9]),
            ),
        },
        {
            "n1:e1:n2": gb.CSCFormatBase(
                indptr=torch.tensor([0, 2, 4]),
                indices=torch.tensor([0, 1, 2, 3]),
            ),
            "n2:e2:n1": gb.CSCFormatBase(
                indptr=torch.tensor([0]),
                indices=torch.tensor([], dtype=torch.int64),
            ),
        },
    ]
    original_column_node_ids = [
        {
            "n1": torch.tensor([0, 1, 1, 0]),
            "n2": torch.tensor([0, 1]),
        },
        {
            "n1": torch.tensor([], dtype=torch.int64),
            "n2": torch.tensor([0, 1]),
        },
    ]
    original_row_node_ids = [
        {
            "n1": torch.tensor([0, 1, 1, 0, 0, 1, 1, 0]),
            "n2": torch.tensor([0, 1, 0, 2, 0, 1, 0, 1, 0, 2]),
        },
        {
            "n1": torch.tensor([0, 1, 1, 0]),
            "n2": torch.tensor([0, 1]),
        },
    ]

    for data in datapipe:
        for step, sampled_subgraph in enumerate(data.sampled_subgraphs):
            for ntype in ["n1", "n2"]:
                assert torch.equal(
                    sampled_subgraph.original_row_node_ids[ntype],
                    original_row_node_ids[step][ntype],
                )
                assert torch.equal(
                    sampled_subgraph.original_column_node_ids[ntype],
                    original_column_node_ids[step][ntype],
                )
            for etype in ["n1:e1:n2", "n2:e2:n1"]:
                assert torch.equal(
                    sampled_subgraph.node_pairs[etype].indices,
                    csc_formats[step][etype].indices,
                )
                assert torch.equal(
                    sampled_subgraph.node_pairs[etype].indptr,
                    csc_formats[step][etype].indptr,
                )
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507


@pytest.mark.parametrize("labor", [False, True])
def test_SubgraphSampler_unique_csc_format_Homo(labor):
    torch.manual_seed(1205)
    graph = dgl.graph(([5, 0, 6, 7, 2, 2, 4], [0, 1, 2, 2, 3, 4, 4]))
    graph = gb.from_dglgraph(graph, True)
    seed_nodes = torch.LongTensor([0, 3, 4])

    itemset = gb.ItemSet(seed_nodes, names="seed_nodes")
    item_sampler = gb.ItemSampler(itemset, batch_size=len(seed_nodes))
    num_layer = 2
    fanouts = [torch.LongTensor([2]) for _ in range(num_layer)]

    Sampler = gb.LayerNeighborSampler if labor else gb.NeighborSampler
    datapipe = Sampler(
        item_sampler,
        graph,
        fanouts,
        replace=False,
        deduplicate=True,
        output_cscformat=True,
    )

    original_row_node_ids = [
        torch.tensor([0, 3, 4, 5, 2, 6, 7]),
        torch.tensor([0, 3, 4, 5, 2]),
    ]
    compacted_indices = [
        torch.tensor([3, 4, 4, 2, 5, 6]),
        torch.tensor([3, 4, 4, 2]),
    ]
    indptr = [
        torch.tensor([0, 1, 2, 4, 4, 6]),
        torch.tensor([0, 1, 2, 4]),
    ]
    seeds = [torch.tensor([0, 3, 4, 5, 2]), torch.tensor([0, 3, 4])]
    for data in datapipe:
        for step, sampled_subgraph in enumerate(data.sampled_subgraphs):
            assert torch.equal(
                sampled_subgraph.original_row_node_ids,
                original_row_node_ids[step],
            )
            assert torch.equal(
                sampled_subgraph.node_pairs.indices, compacted_indices[step]
            )
            assert torch.equal(sampled_subgraph.node_pairs.indptr, indptr[step])
            assert torch.equal(
                sampled_subgraph.original_column_node_ids, seeds[step]
            )


@pytest.mark.parametrize("labor", [False, True])
def test_SubgraphSampler_unique_csc_format_Hetero(labor):
    graph = get_hetero_graph()
    itemset = gb.ItemSetDict(
        {"n2": gb.ItemSet(torch.arange(2), names="seed_nodes")}
    )
    item_sampler = gb.ItemSampler(itemset, batch_size=2)
    num_layer = 2
    fanouts = [torch.LongTensor([2]) for _ in range(num_layer)]
    Sampler = gb.LayerNeighborSampler if labor else gb.NeighborSampler
    datapipe = Sampler(
        item_sampler,
        graph,
        fanouts,
        deduplicate=True,
        output_cscformat=True,
    )
    csc_formats = [
        {
            "n1:e1:n2": gb.CSCFormatBase(
                indptr=torch.tensor([0, 2, 4]),
                indices=torch.tensor([0, 1, 1, 0]),
            ),
            "n2:e2:n1": gb.CSCFormatBase(
                indptr=torch.tensor([0, 2, 4]),
                indices=torch.tensor([0, 2, 0, 1]),
            ),
        },
        {
            "n1:e1:n2": gb.CSCFormatBase(
                indptr=torch.tensor([0, 2, 4]),
                indices=torch.tensor([0, 1, 1, 0]),
            ),
            "n2:e2:n1": gb.CSCFormatBase(
                indptr=torch.tensor([0]),
                indices=torch.tensor([], dtype=torch.int64),
            ),
        },
    ]
    original_column_node_ids = [
        {
            "n1": torch.tensor([0, 1]),
            "n2": torch.tensor([0, 1]),
        },
        {
            "n1": torch.tensor([], dtype=torch.int64),
            "n2": torch.tensor([0, 1]),
        },
    ]
    original_row_node_ids = [
        {
            "n1": torch.tensor([0, 1]),
            "n2": torch.tensor([0, 1, 2]),
        },
        {
            "n1": torch.tensor([0, 1]),
            "n2": torch.tensor([0, 1]),
        },
    ]

    for data in datapipe:
        for step, sampled_subgraph in enumerate(data.sampled_subgraphs):
            for ntype in ["n1", "n2"]:
                assert torch.equal(
                    sampled_subgraph.original_row_node_ids[ntype],
                    original_row_node_ids[step][ntype],
                )
                assert torch.equal(
                    sampled_subgraph.original_column_node_ids[ntype],
                    original_column_node_ids[step][ntype],
                )
            for etype in ["n1:e1:n2", "n2:e2:n1"]:
                assert torch.equal(
                    sampled_subgraph.node_pairs[etype].indices,
                    csc_formats[step][etype].indices,
                )
                assert torch.equal(
                    sampled_subgraph.node_pairs[etype].indptr,
                    csc_formats[step][etype].indptr,
                )